Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38541486

ABSTRACT

Among solution-processable metal oxides, zinc oxide (ZnO) nanoparticle inks are widely used in inverted organic solar cells for the preparation, at relatively low temperatures (<120 °C), of highly efficient electron-transporting layers. There is, however, a recent interest to develop more sustainable and less impacting methods/strategies for the preparation of ZnO NPs with controlled properties and improved performance. To this end, we report here the synthesis and characterization of ZnO NPs obtained using alternative reaction solvents derived from renewable or recycled sources. In detail, we use (i) recycled methanol (r-MeOH) to close the loop and minimize wastes or (ii) bioethanol (b-EtOH) to prove the effectiveness of a bio-based solvent. The effect of r-MeOH and b-EtOH on the optical, morphological, and electronic properties of the resulting ZnO NPs, both in solution and thin-films, is investigated, discussed, and compared to an analogous reference material. Moreover, to validate the properties of the resulting materials, we have prepared PTB7:PC71BM-based solar cells containing the different ZnO NPs as a cathode interlayer. Power conversion efficiencies comparable to the reference system (≈7%) were obtained, validating the proposed alternative and more sustainable approach.

2.
Adv Sci (Weinh) ; 10(32): e2304720, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37776058

ABSTRACT

While organic photovoltaics are accessing specific application sectors taking advantage of their unique properties, it is important to identify as many differentiators as possible to expand the market penetration and consolidation of this technology. In this work, for the first time, the large-scale fabrication of organic photovoltaic modules embedded into structural plastic parts through industrial injection molding is demonstrated. Thermoplastic polyurethane is chosen as the injected material to show that this additional processing step can yield flexible, lightweight photovoltaic modules with enhanced device robustness and virtually unchanged performance. The critical optomechanical and physico-chemical material properties, as well as the plastic processing parameters to enable in-mold plastic solar cells with improved performance and stability, are discussed and provided with perspective.

3.
Injury ; 53 Suppl 2: S2-S12, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35305805

ABSTRACT

Critical-size long bone defects represent one of the major causes of fracture non-union and remain a significant challenge in orthopaedic surgery. Two-stage procedures such as a Masquelet technique demonstrate high level of success however their main disadvantage is the need for a second surgery, which is required to remove the non-resorbable cement spacer and to place the bone graft into the biological chamber formed by the 'induced membrane'. Recent research efforts have therefore been dedicated towards the design, fabrication and testing of resorbable implants that could mimic the biological functions of the cement spacer and the induced membrane. Amongst the various manufacturing techniques used to fabricate these implants, three-dimensional (3D) printing and electrospinning methods have gained a significant momentum due their high-level controllability, scalable processing and relatively low cost. This review aims to present recent advances in the evaluation of electrospun and 3D printed polymeric materials for critical-size, long bone defect reconstruction, emphasizing both their beneficial properties and current limitations. Furthermore, we present and discuss current state-of-the art techniques required for characterisation of the materials' physical, mechanical and biological characteristics. These represent the essential first steps towards the development of personalised implants for single-surgery, large defect reconstruction in weight-bearing bones.


Subject(s)
Bone Regeneration , Bone and Bones , Bone Transplantation , Humans , Polymers , Printing, Three-Dimensional
4.
ACS Omega ; 5(36): 22816-22826, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32954130

ABSTRACT

In the current context, the development of bio-based and high-performance materials is one of the main research priorities. This study aims to combine the outstanding properties of cellulose nanofibrils (CNFs) or nanocrystals (CNCs) with those of bio-based poly(lactic acid) (PLA). Three-phase multilayered materials (TMLs) were built up by complexing a dry CNF- or CNC-based film with two PLA sheets, using a heat-pressing process. Before the preparation of the nanocellulosic films, CNFs and CNCs were modified by the adsorption of a rosin-based nanoemulsion. The rosin mixture as a natural compound is of interest because of its low cost, renewability, hydrophobicity, and its antimicrobial and antioxidant properties. After demonstrating the efficiency of the complexing procedure, we investigated the barrier properties of the multilayered materials against both oxygen and water vapor, with highly encouraging results. In fact, the presence of nanocellulose as an inner layer between the two PLA films significantly enhanced the oxygen barrier, with a decrease in oxygen permeability comprised between 84 and 96% and between 44 and 50% for neat nanocelluloses and nanocelluloses with rosins as the inner layer, respectively. On the other hand, the antioxidant properties of the final multilayered materials including rosins were highlighted, with a highly encouraging radical scavenging activity close to 20%. Because of the simplicity and the efficiency of the proposed method, this study paves the way toward the development of hybrid multimaterials that could be highly attractive for food packaging applications.

5.
Nanomaterials (Basel) ; 9(6)2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31185688

ABSTRACT

The present study investigates the influence of the addition of l-arginine to a matrix of carboxymethylated nanofibrillated cellulose (CMC-NFC), with the aim of fabricating a mobile carrier facilitated transport membrane for the separation of CO2. Self-standing films were prepared by casting an aqueous suspension containing different amounts of amino acid (15-30-45 wt.%) and CMC-NFC. The permeation properties were assessed in humid conditions (70-98% relative humidity (RH)) at 35 °C for CO2 and N2 separately and compared with that of the non-loaded nanocellulose films. Both permeability and ideal selectivity appeared to be improved by the addition of l-arginine, especially when high amino-acid loadings were considered. A seven-fold increment in carbon dioxide permeability was observed between pure CMC-NFC and the 45 wt.% blend (from 29 to 220 Barrer at 94% RH), also paired to a significant increase of ideal selectivity (from 56 to 185). Interestingly, while improving the separation performance, water sorption was not substantially affected by the addition of amino acid, thus confirming that the increased permeability was not related simply to membrane swelling. Overall, the addition of aminated mobile carriers appeared to provide enhanced performances, advancing the state of the art for nanocellulose-based gas separation membranes.

6.
Carbohydr Polym ; 207: 492-501, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30600032

ABSTRACT

In this paper, we propose both a new application for cellulose micro-beads and a new concept in colloidal lithography to directly deposit and template a metal from ions transported by the organized colloidal particles, using the colloidal particles themselves. To do so, 5 µm-sized cellulose micro-beads (CµBs) were first surface-functionalized by trimellitic anhydride to introduce carboxylate ligands before decorating them with Cu2+ ions by complexation of the carboxylate groups with a CuCl2 solution. The Cu2+-loaded CµBs, dispersed in an aqueous phase, were organized in compact monolayer at the vicinity of a planar electrode. The release of cupric ions and subsequent copper deposition were triggered by an electric field delivered by a tension generator. 2D non-close-packing arrays of copper dots assemblies displaying hexagonal symmetry were generated below or around the micro-beads - depending on the ions concentration in the aqueous phase - leading respectively to copper dots deposited circularly or concentrated in rings. The Cu2+-loaded cellulose beads allowed the covering of 2 cm²-surfaces by copper patterns in less than 45 min, using an easy and cheap process.

SELECTION OF CITATIONS
SEARCH DETAIL
...