Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 273(Pt 1): 133042, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866277

ABSTRACT

Developing biobased flame retardant adhesives using a green and simple strategy has recently gained significant attention. Therefore, in this study, we have orange peel waste (OPW) and Acacia gum (AG) phosphorylated at 140 °C to synthesize biomass-derived flame retardant adhesive. OPW is a biomass material readily available in large quantities, which. Has been utilized to produce an eco-friendly, efficient adhesive. Functionalized polysaccharides were used as a binder rather than volatile, poisonous, and unsustainable petroleum-based aldehydes. The P@OPW/AG green adhesive exhibited a higher tensile strength of 11.25 MPa when applied to cotton cloth and demonstrated versatility across various substrates such as glass, cardboard, plastic, wood, and textiles. Additionally, this bio-based robust adhesive displayed remarkable flame-retardant properties. To optimize its flame retardancy, three tests were employed: the spirit lamp flame test, the vertical flammability test (VFT), and the limiting oxygen index (LOI) test. The P@OPW/AG-coated cotton fabric achieved an impressive LOI result of 42 %, while the VFT yielded a char length of only 4 cm. Additionally, during the flame test, P@OPW/AG coated cloth endured more than 845 s of continuous flame illumination. This work offers a sustainable and fire-safe method for creating environmentally friendly high-performance composites using a recyclable bio-based flame-retardant OPW/AG glue.


Subject(s)
Adhesives , Flame Retardants , Flame Retardants/analysis , Adhesives/chemistry , Tensile Strength , Gum Arabic/chemistry , Textiles , Biomass , Citrus sinensis/chemistry , Wood/chemistry
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120453, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34628364

ABSTRACT

Herein, we report the synthesis of a highly fluorescent nitrogen doped graphene quantum dots (N-GQDs) from waste precursors such as melamine sponge and arjuna bark via a microwave treatment and its functional and morphological characterization using various spectroscopy techniques such as optical, FTIR, XPS and TEM. The as-prepared aqueous N-GQD (dia. 2-3 nm) was used for the bio-imaging application using breast carcinoma cell line (MDA-MB-231) as a model, and the locations of all cells in the cytoplasm as well as nuclei were observed to stain brightly in blue fluorescent color successfully. In addition to that, the aqueous N-GQD showed fluorescence quenching behavior in the presence of hydrogen peroxide, which was exploited to sense H2O2, a probable toxin generated in the diseased cells. Importantly, the cell cytotoxicity was measured and found to be non-toxic (70% survival) to the MDA-MB-231 cells even at very high concentration (∼1.8 mg/ml) of the synthesized N-GQD. This study revealing excellent biocompatibility and imaging of the model cancer cells, and sensing of H2O2 by fluorescent quenching, indicates potential in-vivo cell culture applications of the prepared fluorescent N-GQD.


Subject(s)
Graphite , Quantum Dots , Hydrogen Peroxide , Nitrogen , Quantum Dots/toxicity , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...