Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 266: 153541, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34634553

ABSTRACT

Carbohydrate partitioning, the process of transporting carbohydrates from photosynthetic (source) tissues, such as leaves, to non-photosynthetic (sink) tissues, such as stems, roots, and reproductive structures, is vital not only for the growth and development of plants but also for withstanding biotic and abiotic stress. In many plants, sucrose is the primary form of carbohydrate loaded into the phloem for long-distance transport and unloaded into the sink tissues for utilization or storage. We highlight recent findings about 1) phloem loading in grasses, 2) the principal families of sugar transporters involved in sucrose transport, and 3) novel mechanisms by which the activities of sugar transporters are modulated. We discuss exciting discoveries from eudicot species that provide valuable insights regarding the regulation of these sugar transporters, which may be translatable to monocot species. As we better understand the intricate pathways that control the activities of various sugar transporters, we can utilize this knowledge for developing improved crop varieties.


Subject(s)
Gene Expression Regulation, Plant , Membrane Transport Proteins , Poaceae , Sucrose/metabolism , Biological Transport , Membrane Transport Proteins/metabolism , Phloem/metabolism , Poaceae/metabolism
2.
G3 (Bethesda) ; 10(2): 797-810, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31822516

ABSTRACT

We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989 The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.


Subject(s)
Genetic Variation , Plant Development/genetics , Plant Proteins/genetics , Quantitative Trait, Heritable , Reproduction/genetics , Zea mays/genetics , Alleles , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Genetic Linkage , Phenotype , Photosynthesis , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...