Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0139023, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37594266

ABSTRACT

In addition to the 3'-poly(A) tail, vaccinia virus mRNAs synthesized after viral DNA replication (post-replicative mRNAs) possess a 5'-poly(A) leader that confers a translational advantage in virally infected cells. These mRNAs are synthesized in viral factories, the cytoplasmic compartment where vaccinia virus DNA replication, mRNA synthesis, and translation occur. However, a previous study indicates that the poly(A)-binding protein (PABPC1)-which has a well-established role in RNA stability and translation-is absent in the viral factories. This prompts the question of whether other poly(A)-binding proteins engage vaccinia virus post-replicative mRNA in viral factories. Here, in this study, we found that La-related protein 4 (LARP4), a poly(A) binding protein, was enriched in viral factories in multiple types of cells during vaccinia virus infection. Further studies showed that LARP4 enrichment in the viral factories required viral post-replicative gene expression and functional decapping enzymes encoded by vaccinia virus. We further showed that knockdown of LARP4 expression in human foreskin fibroblasts (HFFs) reduced vaccinia virus DNA replication, post-replicative protein levels, and viral production. Interestingly, the knockdown of LARP4 expression also reduced protein levels from transfected mRNA containing a 5'-poly(A) leader in vaccinia virus-infected and uninfected HFFs. Taken together, our results identified a poly(A)-binding protein, LARP4, being enriched in the vaccinia virus viral factories and facilitating viral replication in HFFs. IMPORTANCE Vaccinia virus, the prototype poxvirus, encodes over 200 open reading frames (ORFs). Over 90 of vaccinia virus ORFs are transcribed post-viral DNA replication. All these mRNAs contain a 5'-poly(A) leader, as well as a 3'-poly(A) tail. They are synthesized in viral factories, where vaccinia virus DNA replication, mRNA synthesis, and translation occur. However, surprisingly, the poly(A) binding protein, PABPC1, that is important for mRNA metabolism and translation is not present in the viral factories, suggesting other poly(A) binding protein(s) may be present in viral factories. Here, we found another poly(A)-binding protein, La-related protein 4 (LARP4), enriched in viral factories during vaccinia virus infection. We also showed that LARP4 enrichment in the viral factories depends on viral post-replicative gene expression and functional viral decapping enzymes. The knockdown of LARP4 expression in human foreskin fibroblasts reduced vaccinia virus DNA replication, post-replicative gene expression, and viral production.

2.
bioRxiv ; 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36945573

ABSTRACT

In addition to the 3'-poly(A) tail, vaccinia virus mRNAs synthesized after viral DNA replication (post-replicative mRNAs) possess a 5'-poly(A) leader that confers a translational advantage in virally infected cells. These mRNAs are synthesized in viral factories, the cytoplasmic compartment where vaccinia virus DNA replication, mRNA synthesis, and translation occur. However, a previous study indicates that the poly(A)-binding protein (PABPC1)-which has a well-established role in RNA stability and translation-is not present in the viral factories. This prompts the question of whether another poly(A)-binding protein engages vaccinia virus post-replicative mRNA in viral factories. In this study, we found that La-related protein 4 (LARP4), a poly(A) binding protein, was enriched in viral factories in multiple types of cells during vaccinia virus infection. Further studies showed that LARP4 enrichment in the viral factories required viral post-replicative gene expression and functional decapping enzymes encoded by vaccinia virus. We further showed that knockdown of LARP4 expression in human foreskin fibroblasts (HFFs) significantly reduced vaccinia virus post-replicative gene expression and viral replication. Interestingly, the knockdown of LARP4 expression also reduced 5'-poly(A) leader-mediated mRNA translation in vaccinia virus-infected and uninfected HFFs. Together, our results identified a poly(A)-binding protein, LARP4, enriched in the vaccinia virus viral factories and facilitates viral replication and mRNA translation. Importance: Poxviruses are a family of large DNA viruses comprising members infecting a broad range of hosts, including many animals and humans. Poxvirus infections can cause deadly diseases in humans and animals. Vaccinia virus, the prototype poxvirus, encodes over 200 open reading frames (ORFs). Over 90 of vaccinia virus ORFs are transcribed post-viral DNA replication. All these mRNAs contain a 5'-poly(A) leader, as well as a 3'-poly(A) tail. They are synthesized in viral factories, where vaccinia virus DNA replication, mRNA synthesis and translation occur. However, surprisingly, the poly(A) binding protein (PABPC1) that is important for mRNA metabolism and translation is not present in the viral factories, suggesting other poly(A) binding protein(s) may be present in viral factories. Here we found another poly(A)-binding protein, La-related protein 4 (LARP4), is enriched in viral factories during vaccinia virus infection. We also showed that LARP4 enrichment in the viral factories depends on viral post-replicative gene expression and functional viral decapping enzymes. The knockdown of LARP4 expression in human foreskin fibroblasts (HFFs) significantly reduced vaccinia virus post-replicative gene expression and viral replication. Overall, this study identified a poly(A)-binding protein that plays an important role in vaccinia virus replication.

3.
Mol Ther Methods Clin Dev ; 23: 286-295, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34729376

ABSTRACT

Targeting host factors for anti-viral development offers several potential advantages over traditional countermeasures that include broad-spectrum activity and prevention of resistance. Characterization of host factors in animal models provides strong evidence of their involvement in disease pathogenesis, but the feasibility of performing high-throughput in vivo analyses on lists of genes is problematic. To begin addressing the challenges of screening candidate host factors in vivo, we combined advances in CRISPR-Cas9 genome editing with an immunocompromised mouse model used to study highly pathogenic viruses. Transgenic mice harboring a constitutively expressed Cas9 allele (Cas9 tg/tg ) with or without knockout of type I interferon receptors served to optimize in vivo delivery of CRISPR single-guide RNA (sgRNA) using Invivofectamine 3.0, a simple and easy-to-use lipid nanoparticle reagent. Invivofectamine 3.0-mediated liver-specific editing to remove activity of the critical Ebola virus host factor Niemann-Pick disease type C1 in an average of 74% of liver cells protected immunocompromised Cas9 tg/tg mice from lethal surrogate Ebola virus infection. We envision that immunocompromised Cas9 tg/tg mice combined with straightforward sgRNA in vivo delivery will enable efficient host factor loss-of-function screening in the liver and other organs to rapidly study their effects on viral pathogenesis and help initiate development of broad-spectrum, host-directed therapies against emerging pathogens.

4.
PLoS Pathog ; 16(10): e1008926, 2020 10.
Article in English | MEDLINE | ID: mdl-33031446

ABSTRACT

Cellular decapping enzymes negatively regulate gene expression by removing the methylguanosine cap at the 5' end of eukaryotic mRNA, rendering mRNA susceptible to degradation and repressing mRNA translation. Vaccinia virus (VACV), the prototype poxvirus, encodes two decapping enzymes, D9 and D10, that induce the degradation of both cellular and viral mRNAs. Using a genome-wide survey of translation efficiency, we analyzed vaccinia virus mRNAs in cells infected with wild type VACV and mutant VACVs with inactivated decapping enzymes. We found that VACV decapping enzymes are required for selective translation of viral post-replicative mRNAs (transcribed after viral DNA replication) independent of PKR- and RNase L-mediated translation repression. Further molecular characterization demonstrated that VACV decapping enzymes are necessary for efficient translation of mRNA with a 5'-poly(A) leader, which are present in all viral post-replicative mRNAs. Inactivation of D10 alone in VACV significantly impairs poly(A)-leader-mediated translation. Remarkably, D10 stimulates mRNA translation in the absence of VACV infection with a preference for RNA containing a 5'-poly(A) leader. We further revealed that VACV decapping enzymes are needed for 5'-poly(A) leader-mediated cap-independent translation enhancement during infection. Our findings identified a mechanism by which VACV mRNAs are selectively translated through subverting viral decapping enzymes to stimulate 5'-poly(A) leader-mediated translation.


Subject(s)
DNA Replication/physiology , DNA, Viral/metabolism , Viral Proteins/metabolism , Virus Replication/physiology , Cell Line , Humans , Poxviridae/genetics , RNA Caps/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Vaccinia virus/genetics , Virus Replication/genetics
5.
Pathogens ; 9(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455727

ABSTRACT

The synthesis of host cell proteins is adversely inhibited in many virus infections, whereas viral proteins are efficiently synthesized. This phenomenon leads to the accumulation of viral proteins concurrently with a profound decline in global host protein synthesis, a phenomenon often termed "host shutoff." To induce host shutoff, a virus may target various steps of gene expression, as well as pre- and post-gene expression processes. During infection, vaccinia virus (VACV), the prototype poxvirus, targets all major processes of the central dogma of genetics, as well as pre-transcription and post-translation steps to hinder host cell protein production. In this article, we review the strategies used by VACV to induce host shutoff in the context of strategies employed by other viruses. We elaborate on how VACV induces host shutoff by targeting host cell DNA synthesis, RNA production and processing, mRNA translation, and protein degradation. We emphasize the topics on VACV's approaches toward modulating mRNA processing, stability, and translation during infection. Finally, we propose avenues for future investigations, which will facilitate our understanding of poxvirus biology, as well as fundamental cellular gene expression and regulation mechanisms.

6.
J Vis Exp ; (147)2019 05 01.
Article in English | MEDLINE | ID: mdl-31107441

ABSTRACT

Every poxvirus mRNA transcribed after viral DNA replication has an evolutionarily conserved, non-templated 5'-poly(A) leader in the 5'-UTR. To dissect the role of 5'-poly(A) leader in mRNA translation during poxvirus infection we developed an in vitro transcribed RNA-based luciferase reporter assay. This reporter assay comprises of four core steps: (1) PCR to amplify the DNA template for in vitro transcription; (2) in vitro transcription to generate mRNA using T7 RNA polymerase; (3) Transfection to introduce in vitro transcribed mRNA into cells; (4) Detection of luciferase activity as the indicator of translation. The RNA-based luciferase reporter assay described here circumvents issues of plasmid replication in poxvirus-infected cells and cryptic transcription from the plasmid. This protocol can be used to determine translation regulation by cis-elements in an mRNA including 5'-UTR and 3'-UTR in systems other than poxvirus-infected cells. Moreover, different modes of translation initiation like cap-dependent, cap-independent, re-initiation, and internal initiation can be investigated using this method.


Subject(s)
Genes, Reporter , Luciferases/genetics , Poxviridae/physiology , Protein Biosynthesis , RNA, Viral/genetics , Transcription, Genetic , DNA, Viral/genetics , HeLa Cells , Humans , Poly A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Virus Replication
7.
PLoS Pathog ; 13(8): e1006602, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28854224

ABSTRACT

The poly(A) leader at the 5'-untranslated region (5'-UTR) is an unusually striking feature of all poxvirus mRNAs transcribed after viral DNA replication (post-replicative mRNAs). These poly(A) leaders are non-templated and of heterogeneous lengths; and their function during poxvirus infection remains a long-standing question. Here, we discovered that a 5'-poly(A) leader conferred a selective translational advantage to mRNA in poxvirus-infected cells. A constitutive and uninterrupted 5'-poly(A) leader with 12 residues was optimal. Because the most frequent lengths of the 5'-poly(A) leaders are 8-12 residues, the result suggests that the poly(A) leader has been evolutionarily optimized to boost poxvirus protein production. A 5'-poly(A) leader also could increase protein production in the bacteriophage T7 promoter-based expression system of vaccinia virus, the prototypic member of poxviruses. Interestingly, although vaccinia virus post-replicative mRNAs do have 5'- methylated guanosine caps and can use cap-dependent translation, in vaccinia virus-infected cells, mRNA with a 5'-poly(A) leader could also be efficiently translated in cells with impaired cap-dependent translation. However, the translation was not mediated through an internal ribosome entry site (IRES). These results point to a fundamental mechanism poxvirus uses to efficiently translate its post-replicative mRNAs.


Subject(s)
Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Vaccinia virus/genetics , Virus Replication/genetics , 5' Untranslated Regions/genetics , Blotting, Western , Cell Line , Gene Knockdown Techniques , Humans , Polymerase Chain Reaction , Poxviridae Infections/genetics , RNA Caps/genetics
8.
J Virol ; 91(17)2017 09 01.
Article in English | MEDLINE | ID: mdl-28637757

ABSTRACT

Many viral infections cause host shutoff, a state in which host protein synthesis is globally inhibited. Emerging evidence from vaccinia and influenza A virus infections indicates that subsets of cellular proteins are resistant to host shutoff and continue to be synthesized. Remarkably, the proteins of oxidative phosphorylation, the cellular-energy-generating machinery, are selectively synthesized in both cases. Identifying mechanisms that drive selective protein synthesis should facilitate understanding both viral replication and fundamental cell biology.


Subject(s)
Host-Pathogen Interactions , Oxidative Phosphorylation , Protein Biosynthesis , Virus Diseases/physiopathology , Humans , Influenza A virus , RNA, Messenger/genetics , Vaccinia virus , Viral Proteins/biosynthesis , Virus Replication
9.
J Virol ; 91(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-28003488

ABSTRACT

Vaccinia virus infection causes a host shutoff that is marked by global inhibition of host protein synthesis. Though the host shutoff may facilitate reallocation of cellular resources for viral replication and evasion of host antiviral immune responses, it poses a challenge for continuous synthesis of cellular proteins that are important for viral replication. It is, however, unclear whether and how certain cellular proteins may be selectively synthesized during the vaccinia virus-induced host shutoff. Using simultaneous RNA sequencing and ribosome profiling, two techniques quantifying genome-wide levels of mRNA and active protein translation, respectively, we analyzed the responses of host cells to vaccinia virus infection at both the transcriptional and translational levels. The analyses showed that cellular mRNA depletion played a dominant role in the shutoff of host protein synthesis. Though the cellular mRNAs were significantly reduced, the relative translation efficiency of a subset of cellular mRNAs increased, particularly those involved in oxidative phosphorylation that are responsible for cellular energy production. Further experiments demonstrated that the protein levels and activities of oxidative phosphorylation increased during vaccinia virus infection, while inhibition of the cellular oxidative phosphorylation function significantly suppressed vaccinia virus replication. Moreover, the short 5' untranslated region of the oxidative phosphorylation mRNAs contributed to the translational upregulation. These results provide evidence of a mechanism that couples translational control and energy metabolism, two processes that all viruses depend on host cells to provide, to support vaccinia virus replication during a host shutoff.IMPORTANCE Many viral infections cause global host protein synthesis shutoff. While host protein synthesis shutoff benefits the virus by relocating cellular resources to viral replication, it also poses a challenge to the maintenance of cellular functions necessary for viral replication if continuous protein synthesis is required. Here we measured the host mRNA translation rate during a vaccinia virus-induced host shutoff by analyzing total and actively translating mRNAs in a genome-wide manner. This study revealed that oxidative phosphorylation mRNAs were translationally upregulated during vaccinia virus-induced host protein synthesis shutoff. Oxidative phosphorylation is the major cellular energy-producing pathway, and we further showed that maintenance of its function is important for vaccinia virus replication. This study highlights the fact that vaccinia virus infection can enhance cellular energy production through translational upregulation in the context of an overall host protein synthesis shutoff to meet energy expenditure.


Subject(s)
Oxidative Phosphorylation , RNA, Messenger/genetics , Ribosomes/metabolism , Vaccinia virus/physiology , 5' Untranslated Regions , Gene Expression Regulation , HeLa Cells , Host-Pathogen Interactions , Humans , Protein Biosynthesis , RNA, Messenger/metabolism , Sequence Analysis, RNA , Transcriptome , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...