Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 56(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228124

ABSTRACT

Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.


Subject(s)
Lipofuscin , Oxidative Stress , Brain/metabolism , Lipofuscin/metabolism , Lysosomes/metabolism
2.
Molecules ; 25(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707945

ABSTRACT

Vitamin B3, or niacin, is one of the most important compounds of the B-vitamin complex. Recent reports have demonstrated the involvement of vitamin B3 in a number of pivotal functions which ensure that homeostasis is maintained. In addition, the intriguing nature of its synthesis and the underlying mechanism of action of vitamin B3 have encouraged further studies aimed at deepening our understanding of the close link between the exogenous supply of B3 and how it activates dependent enzymes. This crucial role can be attributed to the gut microflora and its ability to shape human behavior and development by mediating the bioavailability of metabolites. Recent studies have indicated a possible interconnection between the novel coronavirus and commensal bacteria. As such, we have attempted to explain how the gastrointestinal deficiencies displayed by SARS-CoV-2-infected patients arise. It seems that the stimulation of a proinflammatory cascade and the production of large amounts of reactive oxygen species culminates in the subsequent loss of host eubiosis. Studies of the relationhip between ROS, SARS-CoV-2, and gut flora are sparse in the current literature. As an integrated component, oxidative stress (OS) has been found to negatively influence host eubiosis, in vitro fertilization outcomes, and oocyte quality, but to act as a sentinel against infections. In conclusion, research suggests that in the future, a healthy diet may be considered a reliable tool for maintaining and optimizing our key internal parameters.


Subject(s)
Coronavirus Infections/pathology , Gastrointestinal Microbiome/physiology , Niacin/metabolism , Niacinamide/metabolism , Oxidative Stress/physiology , Pneumonia, Viral/pathology , Betacoronavirus/metabolism , COVID-19 , Dysbiosis/physiopathology , Humans , Pandemics , Reactive Oxygen Species/metabolism , SARS-CoV-2
3.
Brain Sci ; 10(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560488

ABSTRACT

Both the gut-brain axis (GBA) and the hypothalamic-pituitary-adrenal (HPA) axis remain an intriguing yet obscure network with a strong influence over other systems of organs. Recent reports have sought to describe the multitude of harmful stressors that may impact the HPA axis along with the interconnections between these. This has improved our knowledge of how the underlying mechanisms working to establish homeostasis are affected. A disruption to the HPA axis can amplify the chances of gastrointestinal deficiencies, whilst also increasing the risk of a wide spectrum of neuropsychiatric disorders. Thus, the influence of microorganisms found throughout the digestive tract possess the ability to affect both physiology and behaviour by triggering responses, which may be unfavourable. This is sometimes the case in of infertility. Numerous supplements have been formulated with the intention of rebalancing the gut microflora. Accordingly, the gut flora may alter the pharmacokinetics of drugs used as part of fertility treatments, potentially exacerbating the predisposition for various neurological disorders, regardless of the age and gender.

SELECTION OF CITATIONS
SEARCH DETAIL
...