Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Phys Sci ; 4(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-38144419

ABSTRACT

Gamma peptide nucleic acids (γPNAs) have recently garnered attention in diverse therapeutic and diagnostic applications. Serine and diethylene-glycol-containing γPNAs have been tested for numerous RNA-targeting purposes. Here, we comprehensively evaluated the in vitro and in vivo efficacy of pH-low insertion peptide (pHLIP)-conjugated serine and diethylene-based γPNAs. pHLIP targets only the acidic tumor microenvironment and not the normal cells. We synthesized and parallelly tested pHLIP-serine γPNAs and pHLIP-diethylene glycol γPNAs that target the seed region of microRNA-155, a microRNA that is upregulated in various cancers. We performed an all-atom molecular dynamics simulation-based computational study to elucidate the interaction of pHLIP-γPNA constructs with the lipid bilayer. We also determined the biodistribution and efficacy of the pHLIP constructs in the U2932-derived xenograft model. Overall, we established that the pHLIP-serine γPNAs show superior results in vivo compared with the pHLIP-diethylene glycol-based γPNA.

2.
Org Biomol Chem ; 20(44): 8714-8724, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36285843

ABSTRACT

Three probe chemistries are evaluated with respect to thermal denaturation temperatures, UV-Vis and fluorescence characteristics, recognition of complementary and mismatched DNA hairpin targets, and recognition of chromosomal DNA targets in the context of non-denaturing fluorescence in situ hybridization (nd-FISH) experiments: (i) serine-γPNAs (SγPNAs), i.e., single-stranded peptide nucleic acid (PNA) probes that are modified at the γ-position with (R)-hydroxymethyl moieties, (ii) Invader probes, i.e., DNA duplexes modified with +1 interstrand zippers of 2'-O-(pyren-1-yl)methyl-RNA monomers, a molecular arrangement that results in a violation of the neighbor exclusion principle, and (iii) double-stranded chimeric SγPNAs:Invader probes, i.e., duplexes between complementary SγPNA and Invader strands, which are destabilized due to the poor compatibility between intercalators and PNA:DNA duplexes. Invader probes resulted in efficient, highly specific, albeit comparatively slow recognition of the model DNA hairpin targets. Recognition was equally efficient and faster with the single-stranded SγPNA probes but far less specific, whilst the double-stranded chimeric SγPNAs:Invader probes displayed recognition characteristics that were intermediate of the parent probes. All three probe chemistries demonstrated the capacity to target chromosomal DNA in nd-FISH experiments, with Invader probes resulting in the most favorable and consistent characteristics (signals in >90% of interphase nuclei against a low background and no signal in negative control experiments). These probe chemistries constitute valuable additions to the molecular toolbox needed for DNA-targeting applications.


Subject(s)
Peptide Nucleic Acids , Serine , In Situ Hybridization, Fluorescence , DNA/chemistry , Peptide Nucleic Acids/chemistry , RNA/chemistry , DNA Probes
3.
Pharm Res ; 39(11): 2709-2720, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36071352

ABSTRACT

PURPOSE: MicroRNAs (miRNAs) are short (~ 22 nts) RNAs that regulate gene expression via binding to mRNA. MiRNAs promoting cancer are known as oncomiRs. Targeting oncomiRs is an emerging area of cancer therapy. OncomiR-21 and oncomiR-155 are highly upregulated in lymphoma cells, which are dependent on these oncomiRs for survival. Targeting specific miRNAs and determining their effect on cancer cell progression and metastasis have been the focus of various studies. Inhibiting a single miRNA can have a limited effect, as there may be other overexpressed miRNAs present that may promote tumor proliferation. Herein, we target miR-21 and miR-155 simultaneously using nanoparticles delivered two different classes of antimiRs: phosphorothioates (PS) and peptide nucleic acids (PNAs) and compared their efficacy in lymphoma cell lines. METHODS: Poly-Lactic-co-Glycolic acid (PLGA) nanoparticles (NPs) containing PS and PNA-based antimiR-21 and -155 were formulated, and comprehensive NP characterizations: morphology (scanning electron microscopy), size (differential light scattering), and surface charge (zeta potential) were performed. Cellular uptake analysis was performed using a confocal microscope and flow cytometry analysis. The oncomiR knockdown and the effect on downstream targets were confirmed by gene expression (real time-polymerase chain reaction) assay. RESULTS: We demonstrated that simultaneous targeting with NP delivered PS and PNA-based antimiRs resulted in significant knockdown of miR-21 and miR-155, as well as their downstream target genes followed by reduced cell viability ex vivo. CONCLUSIONS: This project demonstrated that targeting miRNA-155 and miR-21 simultaneously using nanotechnology and a diverse class of antisense oligomers can be used as an effective approach for lymphoma therapy.


Subject(s)
Lymphoma , MicroRNAs , Peptide Nucleic Acids , Humans , Peptide Nucleic Acids/pharmacology , Antagomirs , MicroRNAs/genetics , Lymphoma/drug therapy , Lymphoma/genetics , Cell Line , Cell Line, Tumor
4.
J Med Chem ; 65(4): 3332-3342, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35133835

ABSTRACT

The blood levels of microRNA-122 (miR-122) is associated with the severity of cardiovascular disorders, and targeting it with efficient and safer miR inhibitors could be a promising approach. Here, we report the generation of a γ-peptide nucleic acid (γPNA)-based miR-122 inhibitor (γP-122-I) that rescues vascular endothelial dysfunction in mice fed a high-fat diet. We synthesized diethylene glycol-containing γP-122-I and found that its systemic administration counteracted high-fat diet (HFD)-feeding-associated increase in blood and aortic miR-122 levels, impaired endothelial function, and reduced glycemic control. A comprehensive safety analysis established that γP-122-I affects neither the complete blood count nor biochemical tests of liver and kidney functions during acute exposure. In addition, long-term exposure to γP-122-I did not change the overall adiposity, or histology of the kidney, liver, and heart. Thus, γP-122-I rescues endothelial dysfunction without any evidence of toxicity in vivo and demonstrates the suitability of γPNA technology in generating efficient and safer miR inhibitors.


Subject(s)
Cardiovascular Diseases/drug therapy , Endothelium, Vascular/drug effects , MicroRNAs/antagonists & inhibitors , Peptide Nucleic Acids/pharmacology , Adiposity/drug effects , Animals , Blood Cell Count , Blood Glucose/metabolism , Body Weight , Diet, High-Fat , Drug Design , Kidney Function Tests , Liver Function Tests , Mice , Mice, Inbred C57BL , MicroRNAs/blood , Muscle, Smooth, Vascular/drug effects , Peptide Nucleic Acids/adverse effects
5.
Cancer Res ; 81(22): 5613-5624, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34548334

ABSTRACT

miRNA-155 (miR-155) is overexpressed in various types of lymphomas and leukemias, suggesting that targeting miR-155 could be a potential platform for the development of precision medicine. Here, we tested the anticancer activity of novel, chemically modified, triplex peptide nucleic acid (PNA)-based antimiRs compared with the current state-of-the-art conventional full-length antimiRs. Next-generation modified PNAs that bound miR-155 by Watson-Crick and Hoogsteen domains possessed superior therapeutic efficacy in vivo and ex vivo compared with conventional full-length anti-miR-155. The efficacy of anti-miR-155 targeting in multiple lymphoma cell lines was comprehensively corroborated by gene expression, Western blot analysis, and cell viability-based functional studies. Finally, preclinical testing in vivo in xenograft mouse models containing lymphoma cell lines demonstrated that treatment with the miR-155-targeting next-generation antimiR resulted in a significant decrease in miR-155 expression, followed by reduced tumor growth. These findings support the effective therapeutic application of chemically modified triplex PNAs to target miR-155 to treat lymphoma. Overall, the present proof-of-concept study further implicates the potential for next-generation triplex gamma PNAs to target other miRNAs for treating cancer. SIGNIFICANCE: This study demonstrates the utility of novel oncomiR inhibitors as cancer therapeutics, providing a new approach for targeting miRNAs and other noncoding RNAs.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphoma/therapy , MicroRNAs/antagonists & inhibitors , Peptide Nucleic Acids/chemistry , Peptide Nucleic Acids/pharmacology , Animals , Apoptosis , Cell Proliferation , Female , Humans , Lymphoma/genetics , Lymphoma/pathology , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , Proof of Concept Study , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Cells ; 10(5)2021 04 25.
Article in English | MEDLINE | ID: mdl-33922958

ABSTRACT

Ischemic stroke and factors modifying ischemic stroke responses, such as social isolation, contribute to long-term disability worldwide. Several studies demonstrated that the aberrant levels of microRNAs contribute to ischemic stroke injury. In prior studies, we established that miR-141-3p increases after ischemic stroke and post-stroke isolation. Herein, we explored two different anti-miR oligonucleotides; peptide nucleic acid (PNAs) and phosphorothioates (PS) for ischemic stroke therapy. We used US FDA approved biocompatible poly (lactic-co-glycolic acid) (PLGA)-based nanoparticle formulations for delivery. The PNA and PS anti-miRs were encapsulated in PLGA nanoparticles by double emulsion solvent evaporation technique. All the formulated nanoparticles showed uniform morphology, size, distribution, and surface charge density. Nanoparticles also exhibited a controlled nucleic acid release profile for 48 h. Further, we performed in vivo studies in the mouse model of ischemic stroke. Ischemic stroke was induced by transient (60 min) occlusion of middle cerebral artery occlusion followed by a reperfusion for 48 or 72 h. We assessed the blood-brain barrier permeability of PLGA NPs containing fluorophore (TAMRA) anti-miR probe after systemic delivery. Confocal imaging shows uptake of fluorophore tagged anti-miR in the brain parenchyma. Next, we evaluated the therapeutic efficacy after systemic delivery of nanoparticles containing PNA and PS anti-miR-141-3p in mice after stroke. Post-treatment differentially reduced both miR-141-3p levels in brain tissue and infarct injury. We noted PNA-based anti-miR showed superior efficacy compared to PS-based anti-miR. Herein, we successfully established that nanoparticles encapsulating PNA or PS-based anti-miRs-141-3p probes could be used as a potential treatment for ischemic stroke.


Subject(s)
Antagomirs/pharmacology , Brain Ischemia/therapy , Disease Models, Animal , Infarction, Middle Cerebral Artery/complications , MicroRNAs/antagonists & inhibitors , Nanoparticles/administration & dosage , Stroke/therapy , Animals , Blood-Brain Barrier/metabolism , Brain Ischemia/etiology , Brain Ischemia/pathology , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Nanoparticles/chemistry , Stroke/etiology , Stroke/pathology
7.
J Clin Med ; 9(6)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604776

ABSTRACT

Antisense oligonucleotides (ASOs) bind sequence specifically to the target RNA and modulate protein expression through several different mechanisms. The ASO field is an emerging area of drug development that targets the disease source at the RNA level and offers a promising alternative to therapies targeting downstream processes. To translate ASO-based therapies into a clinical success, it is crucial to overcome the challenges associated with off-target side effects and insufficient biological activity. In this regard, several chemical modifications and diverse delivery strategies have been explored. In this review, we systematically discuss the chemical modifications, mechanism of action, and optimized delivery strategies of several different classes of ASOs. Further, we highlight the recent advances made in development of ASO-based drugs with a focus on drugs that are approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for clinical applications. We also discuss various promising ASO-based drug candidates in the clinical trials, and the outstanding opportunity of emerging microRNA as a viable therapeutic target for future ASO-based therapies.

8.
Sci Rep ; 10(1): 10065, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572127

ABSTRACT

An impaired decline in blood pressure at rest is typical in people with diabetes, reflects endothelial dysfunction, and increases the risk of end-organ damage. Here we report that microRNA-204 (miR-204) promotes endothelial dysfunction and impairment in blood pressure decline during inactivity. We show that db/db mice overexpress miR-204 in the aorta, and its absence rescues endothelial dysfunction and impaired blood pressure decline during inactivity despite obesity. The vascular miR-204 is sensitive to microbiota, and microbial suppression reversibly decreases aortic miR-204 and improves endothelial function, while the endothelial function of mice lacking miR-204 remained indifferent to the microbial alterations. We also show that the circulating miR-122 regulates vascular miR-204 as miR-122 inhibition decreases miR-204 in endothelial cells and aorta. This study establishes that miR-204 impairs endothelial function, promotes impairment in blood pressure decline during rest, and opens avenues for miR-204 inhibition strategies against vascular dysfunction.


Subject(s)
Endothelium, Vascular/physiopathology , MicroRNAs/genetics , Obesity/genetics , Animals , Blood Pressure Determination , Feces/microbiology , Human Umbilical Vein Endothelial Cells , Humans , Mice , Microbiota , Obesity/physiopathology , Up-Regulation
9.
Molecules ; 25(12)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580326

ABSTRACT

The field of gene therapy has experienced an insurgence of attention for its widespread ability to regulate gene expression by targeting genomic DNA, messenger RNA, microRNA, and short-interfering RNA for treating malignant and non-malignant disorders. Numerous nucleic acid analogs have been developed to target coding or non-coding sequences of the human genome for gene regulation. However, broader clinical applications of nucleic acid analogs have been limited due to their poor cell or organ-specific delivery. To resolve these issues, non-viral vectors based on nanoparticles, liposomes, and polyplexes have been developed to date. This review is centered on non-viral vectors mainly comprising of cationic lipids and polymers for nucleic acid-based delivery for numerous gene therapy-based applications.


Subject(s)
Gene Transfer Techniques , Genetic Vectors/genetics , Lipids/genetics , Polymers/chemistry , DNA/genetics , DNA/therapeutic use , Genetic Therapy/trends , Genetic Vectors/therapeutic use , Humans , Lipids/therapeutic use , Nanoparticles/chemistry , Polymers/therapeutic use , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...