Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1083, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841813

ABSTRACT

Topological band theory establishes a standardized framework for classifying different types of topological matters. Recent investigations have shown that hyperbolic lattices in non-Euclidean space can also be characterized by hyperbolic Bloch theorem. This theory promotes the investigation of hyperbolic band topology, where hyperbolic topological band insulators protected by first Chern numbers have been proposed. Here, we report a new finding on the construction of hyperbolic topological band insulators with a vanished first Chern number but a non-trivial second Chern number. Our model possesses the non-abelian translational symmetry of {8,8} hyperbolic tiling. By engineering intercell couplings and onsite potentials of sublattices in each unit cell, the non-trivial bandgaps with quantized second Chern numbers can appear. In experiments, we fabricate two types of finite hyperbolic circuit networks with periodic boundary conditions and partially open boundary conditions to detect hyperbolic topological band insulators. Our work suggests a new way to engineer hyperbolic topological states with higher-order topological invariants.

2.
Nat Commun ; 13(1): 2392, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35501305

ABSTRACT

Bloch oscillations are exotic phenomena describing the periodic motion of a wave packet subjected to an external force in a lattice, where a system possessing single or multiple particles could exhibit distinct oscillation behaviors. In particular, it has been pointed out that quantum statistics could dramatically affect the Bloch oscillation even in the absence of particle interactions, where the oscillation frequency of two pseudofermions with an anyonic statistical angle of [Formula: see text] becomes half of that for two bosons. However, these statistically dependent Bloch oscillations have never been observed in experiments until now. Here, we report the experimental simulation of anyonic Bloch oscillations using electric circuits. By mapping the eigenstates of two anyons to the modes of the designed circuit simulators, the Bloch oscillations of two bosons and two pseudofermions are verified by measuring the voltage dynamics. The oscillation period in the two-boson simulator is almost twice of that in the two-pseudofermion simulator, that is consistent with the theoretical prediction. Our proposal provides a flexible platform to investigate and visualize many interesting phenomena related to particle statistics and could have potential applications in the field of the signal control.

SELECTION OF CITATIONS
SEARCH DETAIL
...