Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35591128

ABSTRACT

With the increasing popularity of electric vehicles, cable-driven serial manipulators have been applied in auto-charging processes for electric vehicles. To ensure the safety of the physical vehicle-robot interaction in this scenario, this paper presents a model-independent collision localization and classification method for cable-driven serial manipulators. First, based on the dynamic characteristics of the manipulator, data sets of terminal collision are constructed. In contrast to utilizing signals based on torque sensors, our data sets comprise the vibration signals of a specific compensator. Then, the collected data sets are applied to construct and train our collision localization and classification model, which consists of a double-layer CNN and an SVM. Compared to previous works, the proposed method can extract features without manual intervention and can deal with collision when the contact surface is irregular. Furthermore, the proposed method is able to generate the location and classification of the collision at the same time. The simulated experiment results show the validity of the proposed collision localization and classification method, with promising prediction accuracy.


Subject(s)
Support Vector Machine
2.
Sensors (Basel) ; 22(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35591291

ABSTRACT

With the gradual maturity of driverless and automatic parking technologies, electric vehicle charging has been gradually developing in the direction of automation. However, the pose calculation of the charging port (CP) is an important part of realizing automatic charging, and it represents a problem that needs to be solved urgently. To address this problem, this paper proposes a set of efficient and accurate methods for determining the pose of an electric vehicle CP, which mainly includes the search and aiming phases. In the search phase, the feature circle algorithm is used to fit the ellipse information to obtain the pixel coordinates of the feature point. In the aiming phase, contour matching and logarithmic evaluation indicators are used in the cluster template matching algorithm (CTMA) proposed in this paper to obtain the matching position. Based on the image deformation rate and zoom rates, a matching template is established to realize the fast and accurate matching of textureless circular features and complex light fields. The EPnP algorithm is employed to obtain the pose information, and an AUBO-i5 robot is used to complete the charging gun insertion. The results show that the average CP positioning errors (x, y, z, Rx, Ry, and Rz) of the proposed algorithm are 0.65 mm, 0.84 mm, 1.24 mm, 1.11 degrees, 0.95 degrees, and 0.55 degrees. Further, the efficiency of the positioning method is improved by 510.4% and the comprehensive plug-in success rate is 95%. Therefore, the proposed CTMA in this paper can efficiently and accurately identify the CP while meeting the actual plug-in requirements.

3.
Sensors (Basel) ; 21(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669150

ABSTRACT

The structure of the cable-driven serial manipulator (CDSM) is more complex than that of the cable-driven parallel manipulator (CDPM), resulting in higher model complexity and stronger structural and parametric uncertainties. These drawbacks challenge the stable trajectory-tracking control of a CDSM. To circumvent these drawbacks, this paper proposes a robust adaptive controller for an n-degree-of-freedom (DOF) CDSM actuated by m cables. First, two high-level controllers are designed to track the joint trajectory under two scenarios, namely known and unknown upper bounds of uncertainties. The controllers include an adaptive feedforward term based on inverse dynamics and a robust control term compensating for the uncertainties. Second, the independence of control gains from the upper bound of uncertainties and the inclusion of the joint viscous friction coefficient into the dynamic parameter vector are realised. Then, a low-level controller is designed for the task of tracking the cable tension trajectory. The system stability is analysed using the Lyapunov method. Finally, the validity and effectiveness of the proposed controllers are verified by experimenting with a three-DOF six-cable CDSM. In addition, a comparative experiment with the classical proportional-integral-derivative (PID) controller is carried out.

4.
ACS Appl Mater Interfaces ; 10(36): 30741-30751, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30114361

ABSTRACT

Epoxy-based polymer was deposited as sealing agent on porous anodized coatings prepared by plasma electrolytic oxidation (PEO) to construct multilayered "soft-hard" coatings on Mg substrates. Different thicknesses and microstructures of the top epoxy layer were achieved by employing different dip-coating strategies. Atomic force microscopy, pull-off tests, and nanoindentation tests were conducted to study the surface roughness, the adhesion strength of the epoxy layer, and the mechanical properties of each component in the hybrid coating system. The micropores and other defects on the anodized layers were sealed by the epoxy polymer, which decreased the surface roughness. The dominant abrasive wear behavior of blank PEO coatings was significantly reduced by the epoxy layers, and the wear mechanism of the hybrid coatings was proposed considering both the microstructure of the hybrid coatings and the mechanical properties of the different components in the hybrid system.

SELECTION OF CITATIONS
SEARCH DETAIL
...