Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Food Chem ; 454: 139744, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38797096

ABSTRACT

The long-term and excessive use of glyphosate (GLY) in diverse matrices has caused serious hazard to the human and environment. However, the ultrasensitive detection of GLY still remains challenging. In this study, the smartphone-assisted dual-signal mode ratiometric fluorescent and paper sensors based on the red-emissive gold nanoclusters (R-AuNCs) and blue-emissive carbon dots (B-CDs) were ingeniously designed accurate and sensitive detection of GLY. Upon the presence of GLY, it would quench the fluorescence of B-CDs through dynamic quenching effect, and strengthen the fluorescence response of R-AuNCs due to aggregation-induced enhancement effect. Through calculating the GLY-induced fluorescence intensity ratio of B-CDs to R-AuNCs by using a fluorescence spectrophotometer, low to 0.218 µg/mL of GLY could be detected in lab in a wide concentration range of 0.3-12 µg/mL with high recovery of 94.7-103.1% in the spiked malt samples. The smartphone-assisted ratiometric fluorescent sensor achieved in the 96-well plate could monitor 0-11 µg/mL of GLY with satisfactory recovery of 94.1-107.0% in real edible malt matrices for high-throughput analysis. In addition, a portable smartphone-assisted ratiometric paper sensor established through directly depositing the combined B-CDs/R-AuNCs probes on the test strip could realize on-site measurement of 2-8 µg/mL of GLY with good linear relationship. This study provides new insights into developing the dual-signal ratiometric sensing platforms for the in-lab sensitive detection, high-throughput analysis, and on-site portable measurement of more trace contaminants in foods, clinical and environmental samples.

2.
Mol Nutr Food Res ; 68(8): e2300720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581348

ABSTRACT

SCOPE: The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS: The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION: HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.


Subject(s)
Amino Acids, Branched-Chain , Diet, High-Fat , Obesity , Psoriasis , Transaminases , Animals , Male , Mice , Amino Acids, Branched-Chain/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Imiquimod , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-17/genetics , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Obesity/complications , PPAR gamma/metabolism , PPAR gamma/genetics , Psoriasis/metabolism , Psoriasis/pathology , Signal Transduction , Skin/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Transaminases/metabolism
3.
J Tradit Complement Med ; 14(1): 91-100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223807

ABSTRACT

Background: At present, acupuncture-related practices have been widely used to treat psoriasis. In our study, we investigated the effect and explored the mechanism of electroacupuncture (EA) on acupoints Baihui (DU20) and Xuehai (SP10) for the treatment of psoriasis. Methods: Imiquimod-induced psoriasis-like mouse model was used in this study. Mice were treated with electroacupuncture at DU20 and SP10 (depth of 2-3 mm, frequency of 2/15 Hz, intensity of 0.5-1.0 mA, 10 min/day). The severity of psoriasis-like lesions for each group was assessed. In addition, histological analysis of the lesions were performed. The levels of inflammatory cytokines were determined using Elisa. The expression levels of Substance P (SP) and NK1R were measured using Western blotting. In addition, NK1R inhibitor was administrated to evaluate the target of electroacupuncture in our mouse model. Results: Electroacupuncture significantly alleviated IMQ-induced skin lesions and epidermal thickness, accompanied with reduced keratinocyte proliferation, CD3+, CD4+, and CD8+ T cells infiltration. The reduced levels of inflammatory cytokines was observed after electroacupuncture treatment. In addition, electroacupuncture inhibited the expression levels of SP and NK1R. NK1R inhibitor could ameliorate lesional symptoms and suppress epidermal thickening and CD3+, CD4+, and CD8 + T cell infiltration. Conclusions: Electroacupuncture relieved psoriasis-like inflammation and T cell infiltration. This therapeutic action was likely mediated by the modulation of Substance P and its receptor NK1R.

4.
J Ethnopharmacol ; 323: 117702, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38176665

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qing-Re-Chu-Shi Decoction (QRCSD), a traditional Chinese herbal formula, has been employed as a complementary and alternative therapy for inflammatory skin diseases. However, its active constituents and the mechanistic basis of its action on atopic dermatitis remain in adequately understood. AIM OF THE STUDY: Atopic dermatitis (AD) is an allergic dermatitis marked by eczematous lesions and pruritus. The study aimed to elucidate the underlying effects of QRCSD on AD and to identify the components responsible for its therapeutic efficacy in a mouse model. MATERIALS AND METHODS: Network pharmacology and UPLC-mass analysis were used to anticipate the pharmacological mechanisms and to identify active components of QRCSD, respectively. A DNCB-induced AD-like model was established in NC/Nga mice. QRCSD or prednisolone (as a positive control) was administered via gavage every other day from day14 to day 21. Dermatitis severity score, scratching behavior, skin barrier function, spleen index, Th1/Th2 lymphocyte ratio, and serum IgE levels were evaluated. Protein arrays, including 40 inflammatory cytokines, were performed on skin lesions, followed by confirmation experiments of Western blotting in dorsal skin lesions. RESULTS: The construction of a QRCSD-AD-Network and topological analysis firstly proposed potential targets of QRCSD acting on AD. Animal experiments demonstrated that oral administration of QRCSD ameliorated AD-like lesions, reduced epidermal thickness and mast cell count, decreased serum IgE levels, augmented tight junction protein (Claudin 1, Occludin) levels, and regulated the Th1/Th2 balance in the spleen, as well as spleen index. Elevated levels of interleukin (IL)-4, IL-5, IL-6, IL-17, and Eotaxin were revealed in AD-like skin lesions by protein arrays. Western blotting confirmed that the phosphorylation levels of ERK, P38, JNK, STAT3 and P65 were downregulated, and IL-6 expression was also reduced following QRCSD treatment. CONCLUSIONS: The study enhances the understanding of the anti-inflammatory and immunomodulatory effects of QRCSD, showcasing its significant protective role against atopic dermatitis. Treatment with QRCSD may be considered as a viable candidate for complementary and alternative therapy in managing atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Mice , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dinitrochlorobenzene/toxicity , Skin/pathology , Interleukin-6/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/adverse effects , Immunoglobulin E
5.
J Ethnopharmacol ; 324: 117714, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38184027

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The inflammatory skin condition psoriasis is immune-related. The decoction of Jianpi-Yangxue-Jiiedu (JPYX) is a useful medication for psoriasis. However, the underlying mechanics of JPYX have not yet been clarified. AIM OF THE STUDY: The objective of this study was to investigate the mechanism underlying the efficacy of JPYX in the treatment of psoriasis in the context of a high-fat diet. MATERIALS AND METHODS: This work generated a high-fat feeding model of imiquimod (IMQ)-induced psoriasis-like lesion mice. The blood composition of JPYX was examined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The mechanism of JPYX decoction for treating psoriasis was predicted using methods of network pharmacology, metabolomics, and transcriptomics. RESULTS: JPYX prevented the release of inflammatory cytokines, decreased keratinocyte proliferation, enhanced the percentage of Treg cells in the skin, lymph nodes, and thymus, and greatly alleviated psoriatic lesions. Network pharmacology predicted that IL-1ß, TNF, STAT3, and EGFR may be potential targets, and KEGG results showed that PI3K-AKT-mTOR may be a potential mechanism of action. Verification of experimental data demonstrated that the JPYX decoction dramatically decreased mTOR and AKT phosphorylation. According to metabolomics analysis, amino acids and their metabolites, benzene and its substitutes, aldehyde ketone esters, heterocyclic compounds, etc. were the primary metabolites regulated by JPYX. KEGG enrichment analysis of differential metabolites was performed. Fatty acid biosynthesis, Type I polyketide structures, Steroid hormone biosynthesis, Biosynthesis of unsaturated fatty acid, etc. Transcriptomic results showed that JPYX significantly regulated skin development, keratinocyte differentiation, and oxidative phosphorylation. Further experimental data verification showed that JPYX decoction significantly reduced the mRNA levels of mt-Nd4, mt-Nd5, mt-Nd1, Ifi205, Ifi211, and mt-Atp8. CONCLUSIONS: JPYX may improve psoriasis by regulating the metabolic pathways of fatty acids and electron transport of oxidative phosphorylation.


Subject(s)
Drugs, Chinese Herbal , Psoriasis , Animals , Mice , Oxidative Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Electron Transport , Phosphatidylinositol 3-Kinases/metabolism , Chromatography, Liquid , Electrons , Tandem Mass Spectrometry , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/metabolism , TOR Serine-Threonine Kinases/metabolism , Drugs, Chinese Herbal/adverse effects
6.
J Ethnopharmacol ; 321: 117421, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37979820

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Neutrophil extracellular trap (NET) formation plays a crucial role in wound healing disorders, including chronic skin ulcers and diabetic foot ulcers (DFUs). Over the years, traditional Chinese topical medications, such as Cinnabar (composed of HgS and soluble mercury salt) and hydrargyria oxydum rubrum (containing HgO and soluble mercury salt), have been utilized for treating these ailments. Nevertheless, the fundamental processes remain mostly ambiguous. AIM OF THE STUDY: This study sought to investigate the potential effects of topical mercury-containing preparations on the process of NET formation. MATERIALS AND METHODS: Neutrophils isolated from healthy individuals and mouse models of type 1 and type 2 diabetes were cultured with phorbol 12-myristate 13-acetate (PMA), both with and without the mercury-containing preparations (MCP). The formation of NETs was monitored using confocal and scanning electron microscopes. Immunofluorescence and fluorescent probes were employed to assess the levels of citrulline histone H3 (Cit-H3) and intracellular reactive oxygen species (ROS), respectively. The impact of MCP extracts on cytokine expression, peptidylarginine deiminase 4 (PAD4), and myeloperoxidase (MPO) was measured through Luminex and ELISA assays. Phagocytosis of human neutrophils was analyzed using Flow Cytometry. Finally, the phosphorylation levels of ERK were detected by western blotting. RESULTS: Treatment with MCP led to a reduction in PAD4, Cit-H3, and MPO expressions in neutrophils, consequently inhibiting PMA-induced NET formation. MCP treatment also dampened ERK1/2 activation in neutrophils. Furthermore, MCP exhibited inhibitory effects on the secretion of the cytokine IL-8 and ROS production while enhancing neutrophil phagocytosis. CONCLUSION: Our findings suggest that MCP can mitigate the release of NETs, likely by suppressing the ERK1/2 signaling pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Extracellular Traps , Mercury , Humans , Animals , Mice , Extracellular Traps/metabolism , MAP Kinase Signaling System , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Type 2/metabolism , Neutrophils , Cytokines/metabolism
7.
J Inflamm Res ; 16: 3823-3836, 2023.
Article in English | MEDLINE | ID: mdl-37667801

ABSTRACT

Purpose: Resveratrol (Res) is a natural polyphenol with anti-inflammatory and immunomodulatory effects. Alterations in metabolic pathways have been studied in psoriasis. This study is aimed to further explore the potential molecular mechanism of psoriasis improvement by Res. Patients and Methods: Imiquimod (IMQ)-induced psoriasis-like mouse model was established to observe the effects of Res. NanoString nCounter Metabolic Pathways Panel was used to analyze the changed mRNA and qRT-PCR was used for validation. Flow cytometry was used to analyze immune cell subsets in skin lesions. In vitro, we observed the effects of Res on R848-stimulated macrophages glycolysis and inflammation. Results: Res reduced the proliferation of keratinocytes and the secretion of inflammatory cytokines in IMQ-induced psoriasis-like mouse model. Psoriasis model skin lesions were in a state of hypoxia, with upregulated glycolysis and downregulated AMPK activity. Res inhibited the levels of hypoxia-related genes (hif1α, hif3α) and glycolysis-related genes (hk1, ldha), meanwhile increased the levels of AMPK genes (prkaa1, prkaa2). Flow cytometry analysis revealed that Res decreased the infiltration of macrophages in psoriasis-like lesions. In addition, Res decreased the secretion of macrophage-associated pro-inflammatory cytokines (IL-23, TNF-α, IL-1ß). In vitro, Res diminished the secretion of IL-23, TNF-α, IL-1ß, and lactate by R848-stimulated macrophages and activated AMPK. Conclusion: This study suggested that Res diminished psoriasis symptoms by inhibiting macrophages infiltration and inhibiting glycolysis, which providing novel insights into the underlying mechanisms of therapeutic action of Res in the treatment of psoriasis.

8.
Phytomedicine ; 105: 154384, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35963195

ABSTRACT

BACKGROUND: Psoriasis is a prevalent chronic inflammatory skin condition marked by immune cell infiltration and keratinocyte abnormal proliferation. Cimicifugae Rhizoma - Smilax glabra Roxb (CS) herb pair, the main component of Shengma Detoxification Decoction, has been proven effective for the treatment of psoriasis. However, the mechanism is yet to be deciphered. PURPOSE: To explore the mechanism of CS for the treatment of psoriasis. METHODS: The imiquimod-induced psoriasis-like lesion mouse model was used to identify the targets and the molecular mechanisms of CS. Network pharmacology combined with RNA-seq strategy was employed to predict the targets and mechanisms of CS for psoriasis. Metabolomics approaches were used to demonstrate the complexity of CS for the treatment of psoriasis. Finally, a compound-response-enzyme-gene network was constructed based on the multi-omics results to elucidate potential connections. RESULTS: The CS herb pair could significantly improve psoriatic lesions and reduce the inflammatory cell infiltration and proliferation of keratinocytes in skin lesions. Network pharmacology predicted that TNF, JNK, IL-6, and IL-1ß could be potential targets. RNA-seq data revealed that CS could significantly regulate genes and signaling pathways associated with Th17 responses, such as IL-36, IL-1ß, CCl2, CXCL16, keratin 14, keratin 5, and antimicrobial peptides S100A8 and S100A9 well as MAPK, mTOR, and other signaling pathways. Further experimental data validated that CS treatment remarkably reduced the expression of inflammatory cytokines and factors, such as CCL2, CCL7, IL1F6, IL-17, IL-23, IL-1ß, TNF-α, and IL-6, and inhibited the phosphorylation of p38 and ERK1/2. This indicated that CS exerts its therapeutic effect by inhibiting the MAPK signaling pathways. In addition, metabolomic analyses demonstrated that CS treatment improved seven metabolic pathways, these included phenylalanine, tyrosine, pyruvate metabolism, carnitine metabolism, etc. Four key metabolites (L-Arginine, L-Phenylalanine, L-Carnitine, O-Acetylcarnitine) and nine differential genes (CMA1, PCBD2, TPSAB1, TPSB2, etc.) were identified that affected amino acid metabolism, carnitine metabolism, and other pathways contributing to the infiltration of Th17 cells in psoriatic lesions. CONCLUSION: CS could alleviate IMQ-induced psoriasis-like dermatitis by reducing the expression of cytokines and chemokines mediated by the MAPK pathway, and improved amino acid and carnitine metabolism in vivo. Our study is the first to demonstrate the complex mechanism of CS for the treatment of psoriasis and provides a new paradigm to elucidate the pharmacological effects of Traditional Chinese Medicine (TCM) drugs for psoriasis from multiple perspectives.


Subject(s)
Psoriasis , Smilax , Amino Acids , Animals , Carnitine , Cimicifuga , Cytokines , Disease Models, Animal , Imiquimod , Interleukin-6 , Keratinocytes , Mice , Mice, Inbred BALB C , Network Pharmacology , Plant Extracts , RNA-Seq , Skin
9.
Zhongguo Zhen Jiu ; 42(5): 541-8, 2022 May 12.
Article in Chinese | MEDLINE | ID: mdl-35543945

ABSTRACT

OBJECTIVE: To observe the effect of fire needling on psoriasis-like lesion and the signal transducer and activator of transcription 3 (STAT3) pathway in mice and compare the therapeutic effect between different interventions of fire needling therapy (surrounding technique of fire needling, fire needling at "Dazhui" [GV 14] and "Zusanli" [ST 36]). METHODS: Thirty male BALB/c mice were randomized into a blank group, a model group, a dexamthasone group, a surrounding technique group and an acupoint group, 6 mice in each one. Except the blank group, the mice in the rest groups were established as psoriasis-like lesion model by topical application with imiquimod cream, once daily, consecutively for 8 days. From day 4 to day 8, in the dexamthasone group, gastric infusion with 0.2 mL dexamthasone was administered, once daily. On day 4, 6 and 8, in the surrounding technique group, fire needling was exerted around the skin lesion; and fire needling was applied to "Dazhui" (GV 14) and "Zusanli" (ST 36) in the acupoint group, once a day. The changes in skin lesion on the dorsal parts of mice were observed in each group to score the psoriasis area and severity index (PASI). Using HE staining, the dermal morphological changes and epidermal thickness were observed in the mice of each group. The positive expression of proliferating cell-associated antigen Ki-67 was determined by immunofluorescence. Immunohistochemistry method was used to determine the expressions of , and T cells of skin tissue in each group. Using real-time PCR, the expressions of interleukin (IL)-17, IL-22, tumor necrosis factor α(TNF-α) mRNA were determined. Western blot method was adopted to determine the protein expressions of STAT3 and p-STAT3 in skin tissue in each group. RESULTS: Compared with the blank group, the scores of each item and the total scores of PASI, as well as the epidermal thickness were all increased in the mice of the model group (P<0.01). Except for the erythema scores of the dexamethasone group and the surrounding technique group, the scores of each item and the total scores of PASI, as well as the epidermal thickness were all decreased in each intervention group as compared with the model group (P<0.01). The infiltration scores and the total scores in the dexamethasone group and the acupoint group were lower than those in the surrounding technique group respectively (P<0.01, P<0.05). In comparison with the blank group, Ki-67 positive cell numbers and the numbers of , and T cells in skin tissue were increased in the mice of the model group (P<0.01). Ki-67 positive cell numbers and the numbers of , and T cells were reduced in each intervention group as compared with the model group (P<0.01), and the numbers of and T cells in the acupoint group were less than the surrounding technique group (P<0.01). Compared with the blank group, the mRNA expressions of IL-17, IL-22 and TNF-α and the ratio of p-STAT3 to STAT3 were all increased in the model group (P<0.01). The mRNA expressions of IL-17, IL-22 and TNF-α and the ratio of p-STAT3 to STAT3 were all decreased in each intervention group as compared with the model group (P<0.01, P<0.05). The mRNA expressions of IL-17, IL-22 and TNF-α in the acupoint group, as well as mRNA expression of IL-17 in the surrounding technique group were all lower than the dexamethasone group (P<0.01), while, the mRNA expression of IL-22 in the acupoint group was lower than the surrounding technique group (P<0.01). CONCLUSION: Fire needling therapy improves skin lesion severity in imiquimod induced psoriasis-like lesion of the mice, which is probably related to the inhibition of STAT3 pathway activation and the decrease of Th17 inflammatory factors expression. The systemic regulation of fire needling at "Dazhui" (GV 14) and "Zusanli" (ST 36) is superior to the local treatment.


Subject(s)
Interleukin-17 , Psoriasis , Animals , Dexamethasone/metabolism , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Imiquimod/adverse effects , Imiquimod/metabolism , Interleukin-17/metabolism , Ki-67 Antigen/metabolism , Male , Mice , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/drug therapy , RNA, Messenger/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/pharmacology , Skin/metabolism , Skin/pathology , Tumor Necrosis Factor-alpha/metabolism
10.
Article in English | MEDLINE | ID: mdl-35386390

ABSTRACT

Background: Macrophage polarization plays an important role in the pathogenesis of COPD emphysema. Changes in macrophage polarization in COPD remain unclear, while polarization and ferroptosis are essential factors in its pathogenesis. Therefore, this study investigated the relationship between macrophage polarization and ferroptosis in COPD emphysema. Methods: We measured macrophage polarization and the levels of matrix metalloproteinases (MMPs) in the lung tissues of COPD patients and cigarette smoke (CS)-exposed mice. Flow cytometry was used to determine macrophage (THP-M cell) polarization changes. Ferroptosis was examined by FerroOrange, Perls' DAB, C11-BODIPY and 4-HNE staining. Nuclear receptor coactivator 4 (NCOA4) was measured in the lung tissues of COPD patients and CS-exposed mice by western blotting. A cell study was performed to confirm the regulatory effect of NCOA4 on macrophage polarization. Results: Increased M2 macrophages and MMP9 and MMP12 levels were observed in COPD patients, CS-exposed mice and THP-M cells cocultured with CS extract (CSE)-treated human bronchial epithelial (HBE) cells. Increased NCOA4 levels and ferroptosis were confirmed in COPD. Treatment with NCOA4 siRNA and the ferroptosis inhibitor ferrostatin-1 revealed an association between ferroptosis and M2 macrophages. These findings support a role for NCOA4, which induces an increase in M2 macrophages, in the pathogenesis of COPD emphysema. Conclusion: In our study, CS led to the dominance of the M2 phenotype in COPD. We identified NCOA4 as a regulator of M2 macrophages and emphysema by mediating ferroptosis, which offers a new direction for research into COPD diagnostics and treatment.


Subject(s)
Emphysema , Ferroptosis , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Disease Models, Animal , Epithelial Cells , Humans , Macrophages/pathology , Mice , Nuclear Receptor Coactivators/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Emphysema/etiology , Pulmonary Emphysema/pathology , Nicotiana
11.
Biomed Pharmacother ; 147: 112604, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34998030

ABSTRACT

Psoriasis is a common chronic inflammatory hypertrophic skin disease characterized by abnormal proliferation and differentiation of keratinocyte and immune T cell. The pathogenesis of psoriasis has not been fully elucidated and there is no effective therapy in clinic. As a traditional Chinese medicine formula, Yangxue Jiedu Soup (YJS) has been used to treat inflammatory diseases caused by Yin Deficiency and Blood Dryness. The purpose of present study was to investigate the therapeutic effect and molecular mechanism of YJS on psoriasis model mice. Results showed that YJS effectively inhibited the hypertrophy, erythema and scales of psoriasis-like lesions to alleviate the pathological changes of skin lesions, and further decreased the production of TNF-α, IL-6, IL-1ß, IFN-γ, IL-17 and IL-23. Meanwhile, YJS also significantly reduced keratinocyte proliferation and maintained immune system balance by inhibiting the expression of PCNA, Ki-67, CD4 + and CD8 + in psoriasis mice. Moreover, the results further indicated that YJS could inhibit TLR4 activation and NF-κB p65 nuclear transfer by suppressing HSP70 secretion to attenuate the inflammatory response in IMQ-induced mice, which provided a theoretical basis for the clinical use of YJS in the treatment of psoriasis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Psoriasis/prevention & control , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , HSP70 Heat-Shock Proteins/metabolism , Imiquimod , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Phytotherapy , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
12.
Zhongguo Zhen Jiu ; 42(1): 66-72, 2022 Jan 12.
Article in Chinese | MEDLINE | ID: mdl-35025160

ABSTRACT

OBJECTIVE: To observe the effect of moxibustion on skin lesions and immune inflammatory response in psoriasis mice, and to explore the possible mechanism of moxibustion for psoriasis. METHODS: A total of 32 male BALB/c mice were randomly divided into a normal group, a model group, a moxibustion group and a medication group, 8 mice in each group. Psoriasis model was induced by applying 5% imiquimod cream on the back for 7 days in the model group, the moxibustion group and the medication group. At the same time of model establishment, the moxibustion group was treated with suspension moxibustion on skin lesions on the back, 20 min each time, once a day; the medication group was treated with 1 mg/kg methotrexate tablet solution by gavage, once a day. Both groups were intervened for 7 days. The daily changes of skin lesions were observed, and the psoriasis area and severity index (PASI) score was evaluated; the histopathological changes of skin lesions were observed by HE staining; the positive expression of proliferating cell nuclear antigen (PCNA) and T lymphocyte surface marker CD3 were detected by immunohistochemistry; the expression level of serum interleukin (IL) -17A was detected by ELISA, and the relative expressions of tumor necrosis factor-α (TNF-α), IL-1ß and IL-6 mRNA in skin lesions were detected by real-time PCR. RESULTS: The increased and hypertrophy scale, dry skin, red and swollen epidermis and obvious infiltration were observed in the model group, and each score and total score of PASI were higher than those in the normal group (P<0.01). The scale score, infiltration score, and total score of PASI in the moxibustion group were lower than those in the model group (P<0.01); the infiltration score and total score of PASI in the medication group were lower than those in the model group (P<0.01, P<0.05). The inflammatory cell infiltration in the model group was obvious, and the thickness of epidermal layer was increased compared with that in the normal group (P<0.01); the inflammatory cell infiltration and Munro micro abscess were decreased in the moxibustion group and the medication group, and the thickness of epidermal layer was decreased compared with that in the model group (P<0.01). Compared with the normal group, the positive cell number of PCNA and T was increased (P<0.01), and the body mass was decreased, and the spleen index was increased (P<0.01), and the expression of serum IL-17A and the relative expression of TNF-α, IL-1ß and IL-6 mRNA in the skin lesions was increased in the model group (P<0.01). Compared with the model group, the positive cell number of PCNA and T was reduced (P<0.01), and the spleen index and the relative expression of TNF-α, IL-1ß and IL-6 mRNA were reduced (P<0.01) in the moxibustion group and the medication group; the body mass of mice in the moxibustion group was higher than that in the model group (P<0.01); the content of serum IL-17A in the medication group was lower than that in the model group (P<0.01); the relative expression of TNF-α, IL-1ß mRNA in the moxibustion group was higher than that in the medication group (P<0.01). CONCLUSION: Moxibustion could effectively improve the scale and infiltration of skin lesions in psoriasis mice. Its mechanism may be related to inhibiting inflammatory response and regulating immunity.


Subject(s)
Moxibustion , Psoriasis , Animals , Imiquimod , Male , Mice , Psoriasis/genetics , Psoriasis/therapy , Skin , Spleen , Tumor Necrosis Factor-alpha/genetics
13.
Chemosphere ; 287(Pt 3): 132170, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34826932

ABSTRACT

Perfluorooctanoic acid (PFOA), a hazardous environmental pollutant, has been found to enhance hepatic synthesis of fibroblast growth factor 21 (FGF21). FGF21 can enter the brain and increase the expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus (PVN). In this study, adult male mice were orally administered PFOA to evaluate how it regulates emotion. Exposure of mice to PFOA (1 mg kg-1 bw) for 10 consecutive days (PFOA-mice) caused anxiety-like behaviors and a peroxisome proliferator-activated receptor α (PPARα)-dependent increase in hepatic FGF21 synthesis. The levels of CRF expression in not only PVN but also basolateral amygdala complex (BLA) neurons of PFOA-mice were increased via FGF receptor 1 (FGF-R1) activation. However, the microinjection of FGF-R1 or CRF 1 receptor (CRF-R1) antagonist in the BLA rather than the PVN of PFOA-mice could relieve their anxiety-like behaviors. In addition, external capsule-BLA synaptic transmission in PFOA-mice was enhanced by increasing CRF-R1-mediated presynaptic glutamate release, which was corrected by the blockade of PPARα, FGF-R1 and CRF-R1 or the inhibition of PKA. Furthermore, the threshold of frequency-dependent long-term potentiation (LTP) induction was decreased in the BLA of PFOA-mice, which depended on the activation of PPARα, FGF-R1, CRF-R1, PKA and NMDA receptor (NMDAR), whereas long-term depression (LTD) induction was unchanged. Thus, the results indicate that the exposure of male mice to PFOA (1 mg kg-1 bw) enhances CRF expression in BLA neurons by increasing hepatic FGF21 synthesis, which then enhances CRF-R1-mediated presynaptic glutamate release to facilitate NMDAR-dependent BLA-LTP induction, leading to the production of anxiety-like behaviors.


Subject(s)
Basolateral Nuclear Complex , Corticotropin-Releasing Hormone , Animals , Anxiety/chemically induced , Basolateral Nuclear Complex/metabolism , Caprylates/toxicity , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Fluorocarbons , Male , Mice
14.
Phytomedicine ; 95: 153864, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34923236

ABSTRACT

BACKGROUND: Psoriasis is a psychosomatic immune skin disease with psychological factors contributing to the disease. Substance P (SP) is highly expressed in the psoriatic lesions of patients and is involved in pathological disease progression. Tribulus terrestris L. has been used as a Chinese herbal medicine for disease prevention for thousands of years. Terrestrosin D (TED) has been identified as the effective monomeric component of Tribulus terrestris L.. PURPOSE: We investigated whether TED could reverse imiquimod-induced psoriatic lesions, and then, investigated its potential mechanism of action both in vivo and in vitro. METHODS: 5% imiquimod cream was applied onto the backs of mice for 6 days to induce psoriasis-like skin lesions. The psoriatic area and severity index (PASI) was then used for scoring disease severity. Pathological changes and Ki-67 expression levels in skin lesions were measured using hematoxylin and eosin (H&E) and immunofluorescence staining after TED administration. The in vivo and in vitro expression levels of inflammatory cytokines, the ratio of DCs, and SP were measured using ProcartaPlex Mouse Cytokine panels, flow cytometry, and western blotting. Behavioral assessments were determined using the open field and elevated plus-maze (EPM) test. RESULTS: TED decreased PASI scores, epidermal thickness, Ki-67 expression levels, the ratio of DCs in the spleen, and secretion of IL-12p70, IL-18, and TNF-α in imiquimod-induced psoriasis-like murine models. Furthermore, TED increased IL-10 secretion levels, improved behavior, and down-regulated the expression levels of SP. Additionally, TED inhibited the in vitro maturation and activation of SP-induced CD11c+ DCs and the release of IL-12p70 and IL-23. CONCLUSION: TED reduced DCs maturation, down-regulated the expression levels of inflammatory factors, and improved skin lesions and behavior of psoriasis-like murine models by inhibiting the interaction between Substance P and Dendritic cells.


Subject(s)
Psoriasis , Substance P , Animals , Cell Proliferation , Cytokines , Dendritic Cells , Disease Models, Animal , Imiquimod , Mice , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/drug therapy , Saponins , Skin
15.
Int J Chron Obstruct Pulmon Dis ; 16: 3347-3362, 2021.
Article in English | MEDLINE | ID: mdl-34934311

ABSTRACT

BACKGROUND: Nuclear factor E2-related factor 2 (Nrf2) is involved in oxidative stress and lung inflammation and regulates the etiology of chronic obstructive pulmonary disease (COPD). Ferroptosis is characterized by the accumulation of lipid reactive oxygen species (ROS) via ferrous ion-dependent Fenton reactions and is involved in COPD. However, the role of Nrf2 in ferroptosis and its epigenetic regulation in the pathogenesis of COPD remain unclear. METHODS: Ferroptosis was detected by 4-HNE, MDA, C11BODIPY, DCFH-DA, Peals' staining and CCK-8 assays. qPCR and Western blotting were performed to examine the Nrf2 levels in peripheral lung tissues, primary epithelial cells collected from patients with COPD and subjects with normal pulmonary function (never-smoker [control-NS]; smoker [control-S]), and cigarette smoke extract (CSE)-treated human bronchial epithelial (HBE) cells. ELISA was used to quantify IL-8 and IL-1ß levels. Methylation of the Nrf2 promoter was analyzed by bisulfite sequencing and pyrosequencing. RESULTS: Ferroptosis was involved in COPD and glutathione peroxidase 4 (GPX4) expression was downregulated in the COPD group. Reactive oxygen species (ROS), lipid peroxides and MDA were increased, but GPX4 and SOD were exhausted in CSE-treated HBE cells. The production of IL-1ß and IL-8 was promoted in HBE cells in response to CSE but could be reversed by the ferroptosis inhibitor fer-1. The Nrf2 level was significantly decreased in the COPD group compared with the control-S and control-NS groups. Increased Nrf2 expression enhanced GPX4 and SOD levels and inhibited ferroptosis and proinflammatory cytokines in the supernatant. Inhibition of GPX4 reversed the effect of Nrf2 overexpression and promoted ferroptosis. Two specific CpG sites within the Nrf2 promoter were hypermethylated in the COPD group. Similarly, CSE-treated HBE cells exhibited hypermethylation of the Nrf2 gene. CONCLUSION: Nrf2 expression was downregulated in the lungs of COPD patients due to hypermethylation of the Nrf2 promoter, inhibiting Nrf2/GPX4 and ferroptosis, which is related to the initiation and progression of COPD. Targeting Nrf2/GPX4 may inhibit ferroptosis, which could provide strategies to delay or treat COPD.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Epigenesis, Genetic , Humans , NF-E2-Related Factor 2/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology
16.
J Ovarian Res ; 14(1): 141, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34706750

ABSTRACT

BACKGROUND: Perfluorohexane sulfonate (PFHxS) is a six-carbon perfluoroalkyl sulfonic acid found as an environmental contaminant. This study aims to investigate the effects of PFHxS exposure on female reproduction and the underlying mechanism in mice. METHODS: Eight-week-old ICR mice were divided randomly into four groups administered corn oil (vehicle) and PFHxS at doses of 0.5, 5, and 50 mg/kg/day for 42 days by intragastric administration. Body weight, ovarian weight, estrous cycle, follicle counts, and serum sex hormone levels were evaluated. The expression of kisspeptin and gonadotropin releasing hormone (GnRH) in the hypothalamus was also detected. RESULTS: Compared to vehicle exposure, 5 mg/kg/day PFHxS treatment prolonged the estrous cycle, especially the duration of diestrus, after 42 days of treatment. The numbers of secondary follicles, antral follicles and corpus lutea were significantly reduced in the PFHxS-treated mice. Moreover, compared with the control mice, the PFHxS-treated mice showed decreases in the serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estrogen (E2), and reduced GnRH mRNA levels, along with the lack of an LH surge. Furthermore, the PFHxS-treated mice had lower levels of kisspeptin immunoreactivity and kiss-1 mRNA in the arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV) than the control mice. After intraventricular administration of kisspeptin-10, the numbers of secondary follicles, antral follicles and corpus lutea recovered, along with the levels of GnRH mRNA, FSH, and LH in the mice treated with 5 mg/kg/day PFHxS. CONCLUSION: These results indicate that chronic exposure of mice to 5 mg/kg/day PFHxS affects reproductive functions by inhibiting kisspeptin expression in the ARC and AVPV regions, leading to deficits in follicular development and ovulation.


Subject(s)
Fluorocarbons/adverse effects , Kisspeptins/drug effects , Reproduction/drug effects , Animals , Mice
17.
Zhongguo Zhen Jiu ; 41(7): 762-6, 2021 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-34259409

ABSTRACT

OBJECTIVE: To observe the short-term and long-term effects of moxibustion on plaque psoriasis of blood stasis, and to compare the curative effect between moxibustion and calcipotriol ointment. METHODS: A total of 80 patients with plaque psoriasis of blood stasis were randomly divided into an observation group (40 cases, 2 cases dropped off) and a control group (40 cases, 4 cases dropped off). Both groups were given routine medical vaseline topical emollient basic treatment. In the observation group, moxibustion was applied to ashi point (target skin lesions), Zusanli (ST 36), Xuehai (SP 10) and Qihai (CV 6) for 30 min each time, 3 times a week. The control group was treated with calcipotriol ointment (0.25 g each time, once in the morning and evening) on the target skin lesions. Both groups were treated for 8 weeks. The psoriasis area and severity index (PASI) score before and after treatment, main clinical symptoms of TCM score and dermatology life quality index (DLQI) score before and after treatment and 3 and 6 moths follow-up were observed in the two groups; the clinical efficacy after treatment was evaluated and the recurrence rates of the two groups were followed up for 3 and 6 months after treatment. RESULTS: After treatment, the PASI scores in the both groups were lower than before treatment (P<0.01). After treatment and 3 and 6 months follow-up, the main clinical symptoms of TCM scores and DLQI scores of the two groups were lower than those before treatment (P<0.05), and at 3 and 6 months follow-up, those in the observation group were lower than the control group (P<0.01). There was no statistically significant difference between the observation group and the control group in overall effective rate and target skin lesion effective rate (P>0.05). At 3 and 6 months follow-up, the overall recurrence rate and target skin lesion recurrence rate in the observation group were lower than those in the control group (P<0.05). CONCLUSION: Both moxibustion and calcipotriol ointment have good short-term effects on plaque psoriasis of blood stasis. Moxibustion has more advantages in reducing the recurrence rate of psoriasis, improving the main clinical symptoms of TCM and quality of life.


Subject(s)
Moxibustion , Psoriasis , Acupuncture Points , Humans , Psoriasis/drug therapy , Quality of Life , Treatment Outcome
18.
Int Immunopharmacol ; 99: 107900, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34233233

ABSTRACT

Psoriasis is a skin disease with autoimmune tendency, and taxifolin is an effective flavonoid with anti-inflammatory activity. It has been reported that taxifolin alleviates psoriatic dermatitis, but the detailed regulatory mechanism of keratinocyte proliferation is unclear. In this study, we revealed the mechanism of taxifolin on imiquimod-induced inflammatory infiltration and keratinocyte over-proliferation. Our results show that taxifolin prevented proliferation cycle of keratinocyte in a concentration-dependent manner. Over-proliferation and abnormal apoptosis of epidermal cells were obvious in the mouse model of psoriasis induced by imiquimod. Taxifolin treatment improved erythema and scales of psoriatic lesions in mice, and reduced the proportion of CD3 + cells, especially γδT cells, in lesions and thymus. Therefore, taxifolin decreased the expression level of IL-17A-dominated inflammatory cytokines. Proteomic analysis showed that 30 up-regulated proteins and 23 down-regulated proteins were compared with the lesions before and after the treatment with taxifolin. Among them, cytoplasmic phospholipase A2 (cPLA2), the key enzyme of the pro-inflammatory mediator, was the most significantly down-regulated protein. And enriched KEGG pathway shown that PPAR-γ pathway was most involved. Taxifolin significantly reduced p-cPLA2 and increased PPAR-γ protein level in keratinocytes and lesions induced by IL-17 and imiquimod respectively. Meanwhile, phosphorylation of ERK and P-38 were also inhibited. These results suggest that taxifolin prevented imiquimode-induced excessive immune activation and keratinocyte proliferation by decreasing p-cPLA2 and regulating the PPAR-γ pathway. Our study provides new insights into the cellular regulatory mechanisms of taxifolin in psoriasis.


Subject(s)
Psoriasis/drug therapy , Quercetin/analogs & derivatives , Animals , Cell Line , Cell Proliferation/drug effects , Cytoplasm/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Humans , Imiquimod , Keratinocytes/drug effects , Keratinocytes/metabolism , Male , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/metabolism , PPAR gamma/metabolism , Phospholipases A2/metabolism , Phosphorylation/drug effects , Proteomics , Psoriasis/chemically induced , Psoriasis/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Signal Transduction/drug effects
19.
Biomed Pharmacother ; 141: 111884, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34243099

ABSTRACT

BACKGROUND: psoriasis is a chronic inflammatory skin disease. The accumulation of IL-17 cytokines in the lesions leads to epidermis proliferation. Traditional Chinese medicine has a significant effect on psoriasis treatment. Among them, Tuhuaiyin is a representative prescription, which has an outstanding curative effect in acute and remission stage. METHODS: To reveal the target and molecular mechanism of Tuhuaiyin, systematic pharmacology platform and database screening were used to construct the Tuhuaiyin interaction network with compounds, targets and diseases. The intervention of Tuhuaiyin on keratinocyte proliferation and inflammation was verified in the model of psoriasis-like lesions induced by imiquimod. The effect on the number and function of IL-17-producing cells was detected, and the regulatory effect of Tuhuaiyin on gut microbial was explored. RESULTS: 32 selected active molecules in Tuhuaiyin acted on psoriasis biological processes. Tuhuaiyin significantly alleviates erythema and scales in the psoriasis like mouse model induced by imiquimod. Excessive proliferation of keratinocytes and infiltration of inflammatory cells were restrained in the dermis by using Tuhuaiyin. The expression of IL-17 was down-regulated in skin and peripheral blood. The proportion of IL-17-producing cells was decreased in immune organs. And phosphorylation of JNK inhibited in skin lesions. At the same time, the change of gut microbial diversity in the psoriasis-like model was improved. CONCLUSION: our study predicted and verified the molecular immunological mechanism of Tuhuaiyin, alleviated the abnormal proliferation of keratinocytes by inhibiting the proportion of IL-17-producing cells and the expression of IL-17 cytokines. Taken together, our data identify the therapeutic potential of Tuhuaiyin for psoriasis.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Gastrointestinal Microbiome/drug effects , Imiquimod/toxicity , Interleukin-17/antagonists & inhibitors , Network Pharmacology/methods , Psoriasis/drug therapy , Animals , Antineoplastic Agents/toxicity , Caco-2 Cells , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/physiology , Humans , Interleukin-17/biosynthesis , Male , Mice , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/metabolism
20.
Front Pharmacol ; 12: 626267, 2021.
Article in English | MEDLINE | ID: mdl-34168554

ABSTRACT

Clinical studies have demonstrated the anti-psoriatic effect of the LiangXueJieDu (LXJD) herbal formula. However, the systemic mechanism and the targets of the LXJD formula have not yet been elucidated. In the present study, a systems pharmacology approach, metabolomics, and experimental evaluation were employed. First, by systematic absorption-distribution-metabolism-excretion (ADME) analysis, 144 active compounds with satisfactory pharmacokinetic properties were identified from 12 herbs of LXJD formula using the TCMSP database. These active compounds could be linked to 125 target proteins involved in the pathological processes underlying psoriasis. Then, the networks constituting the active compounds, targets, and diseases were constructed to decipher the pharmacological actions of this formula, indicating its curative effects in psoriasis treatment and related complications. The psoriasis-related pathway comprising several regulatory modules demonstrated the synergistic mechanisms of LXJD formula. Furthermore, the therapeutic effect of LXJD formula was validated in a psoriasis-like mouse model. Consistent with the systems pharmacology analysis, LXJD formula ameliorated IMQ-induced psoriasis-like lesions in mice, inhibited keratinocyte proliferation, improved keratinocyte differentiation, and suppressed the infiltration of CD3+ T cells. Compared to the model group, LXJD formula treatment remarkably reduced the expression of inflammatory cytokines and factors, such as IL-1ß, IL-6, TNF-α, Cox2, and inhibited the phosphorylation of p-P65, p-IқB, p-ERK, p-P38, p-PI3K, p-AKT, indicating that LXJD formula exerts its therapeutic effect by inhibiting the MAPK, PI3K/AKT, and NF-қB signaling pathways. The metabolic changes in the serum of psoriasis patients were evaluated by liquid chromatography coupled with orbitrap mass spectrometry (LC-MS). The LXJD formula improved two perturbed metabolic pathways of glycerophospholipid metabolism and steroid hormone biosynthesis. Overall, this study revealed the complicated anti-psoriatic mechanism of LXJD formula and also offered a reliable strategy to elucidate the complex therapeutic mechanism of this Chinese herbal formula in psoriasis from a holistic perspective.

SELECTION OF CITATIONS
SEARCH DETAIL
...