Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 13273, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30185838

ABSTRACT

Over 75% of abdominal aortic aneurysms harbor an intraluminal thrombus, and increasing evidence suggests that biologically active thrombus contributes to the natural history of these potentially lethal lesions. Thrombus formation depends on the local hemodynamics, which in turn depends on morphological features of the aneurysm and near vasculature. We previously presented a hemodynamically motivated "thrombus formation potential" that predicts where and when thrombus might form. Herein, we combine detailed studies of the three-dimensional hemodynamics with methods of sparse grid collocation and interpolation via kriging to examine roles of five key morphological features of aneurysms on thrombus formation: lesion diameter, axial position, length, curvature, and renal artery position. Computational simulations suggest that maximum diameter is a key determinant of thrombogenicity, but other morphological features modulate this dependence. More distally located lesions tend to have a higher thrombus formation potential and shorter lesions tend to have a higher potential than longer lesions, given the same aneurysmal dilatation. Finally, movement of vortical structures through the infrarenal aorta and lesion can significantly affect thrombogenicity. Formation of intraluminal thrombus within an evolving abdominal aortic aneurysm thus depends on coupled morphological features, not all intuitive, and computational simulations can be useful for predicting thrombogenesis.


Subject(s)
Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm/pathology , Thrombosis/pathology , Aorta, Abdominal/pathology , Aortic Aneurysm/metabolism , Biomechanical Phenomena , Computer Simulation , Hemodynamics/physiology , Humans , Thrombosis/metabolism
2.
Article in English | MEDLINE | ID: mdl-27569676

ABSTRACT

Accumulating evidence suggests that intraluminal thrombus plays many roles in the natural history of abdominal aortic aneurysms. There is, therefore, a pressing need for computational models that can describe and predict the initiation and progression of thrombus in aneurysms. In this paper, we introduce a phenomenological metric for thrombus deposition potential and use hemodynamic simulations based on medical images from 6 patients to identify best-fit values of the 2 key model parameters. We then introduce a shape optimization method to predict the associated radial growth of the thrombus into the lumen based on the expectation that thrombus initiation will create a thrombogenic surface, which in turn will promote growth until increasing hemodynamically induced frictional forces prevent any further cell or protein deposition. Comparisons between predicted and actual intraluminal thrombus in the 6 patient-specific aneurysms suggest that this phenomenological description provides a good first estimate of thrombus deposition. We submit further that, because the biologically active region of the thrombus appears to be confined to a thin luminal layer, predictions of morphology alone may be sufficient to inform fluid-solid-growth models of aneurysmal growth and remodeling.


Subject(s)
Aortic Aneurysm, Abdominal/pathology , Hemodynamics , Thrombosis/pathology , Aortic Aneurysm, Abdominal/etiology , Disease Progression , Finite Element Analysis , Humans , Models, Cardiovascular , Thrombosis/complications
3.
J Biomech Eng ; 135(2): 021011, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23445056

ABSTRACT

Most computational models of abdominal aortic aneurysms address either the hemodynamics within the lesion or the mechanics of the wall. More recently, however, some models have appropriately begun to account for the evolving mechanics of the wall in response to the changing hemodynamic loads. Collectively, this large body of work has provided tremendous insight into this life-threatening condition and has provided important guidance for current research. Nevertheless, there has yet to be a comprehensive model that addresses the mechanobiology, biochemistry, and biomechanics of thrombus-laden abdominal aortic aneurysms. That is, there is a pressing need to include effects of the hemodynamics on both the development of the nearly ubiquitous intraluminal thrombus and the evolving mechanics of the wall, which depends in part on biochemical effects of the adjacent thrombus. Indeed, there is increasing evidence that intraluminal thrombus in abdominal aortic aneurysms is biologically active and should not be treated as homogeneous inert material. In this review paper, we bring together diverse findings from the literature to encourage next generation models that account for the biochemomechanics of growth and remodeling in patient-specific, thrombus-laden abdominal aortic aneurysms.


Subject(s)
Aortic Aneurysm, Abdominal/complications , Mechanical Phenomena , Thrombosis/complications , Animals , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/physiopathology , Biomechanical Phenomena , Humans , Models, Biological
4.
J Biomech ; 44(13): 2418-26, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21767843

ABSTRACT

Abdominal aortic aneurysm (AAA) is a cardiovascular disease with high incidence among elderly population. Biomechanical computational analyses can provide fundamental insights into AAA pathogenesis and clinical management, but modeling should be sufficiently accurate. Several constitutive models of the AAA wall are present in the literature, and some of them seem to well describe the experimental behavior of the aneurysmatic human aorta. In this work we compare a two (2FF) and a four (4FF) fiber families constitutive models of the AAA wall. Both these models satisfactorily fit literature data from biaxial tests on the aneurysmatic tissue. To investigate the peculiar characteristics of these models, we considered the problem of AAA inflation, and solved it by implementing the constitutive equations in a finite element code. A 20% axial stretch was imposed to the aneurysm ends, to simulate the physiological condition. Although fitted on the same dataset, the two material models lead to considerably different outcomes. In particular, adopting a 4FF strain energy function (SEF), an increase of the circumferential stress values can be observed, while higher axial stresses are recorded for the 2FF model. These differences can be attributed to the intrinsic characteristics of the SEFs and to the effective stress field, with respect to the one experienced in biaxial experimental tests on which the fitting is based. In fact the two SEFs appear similar within the region of the stress-strain experimental data, but become different outside it, as in case of aneurysms, due to the effects of the data extrapolation process. It is suggested that experimental data should be obtained for conditions similar to those of the application for which they are intended.


Subject(s)
Aortic Aneurysm, Abdominal/pathology , Models, Cardiovascular , Aortic Aneurysm, Abdominal/physiopathology , Biomechanical Phenomena , Computer Simulation , Humans , Mathematical Computing
SELECTION OF CITATIONS
SEARCH DETAIL
...