Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sports Health ; 15(1): 67-73, 2023.
Article in English | MEDLINE | ID: mdl-35343321

ABSTRACT

BACKGROUND: The aim of this study was to investigate the effects of gradient and speed on running variability (RV) and local dynamic stability (LDS) during uphill running. HYPOTHESES: (1) Both gradient and speed increase metabolic effort, in terms of heart rate (HR) and perceived exertion (CR10), in line with the contemporary literature, and (2) gradient increases RV and impairs LDS. STUDY DESIGN: "Crossover" observational design. LEVEL OF EVIDENCE: Level 3. METHODS: A total of 25 runners completed 10-minute running trials in 3 different conditions and in a randomized order: gradient at 0% (0CON), 2% (2CON), and 2% at isoefficiency speed (2IES). 0CON and 2CON speeds were calculated as the "best 10-km race performance" minus 1 km·h-1, whereas 2IES speed was adjusted to induce the same metabolic expenditure as 0CON. HR and perceived exertion as well as running kinematic variables were collected across all trials and conditions. Running variability was calculated as the standard deviation of the mean stride-to-stride intervals over 100 strides, while LDS was expressed by the Lyapunov exponent (LyE) determined on running cycle time over different running conditions. RESULTS: Increases in HR and CR10 were observed between 0CON and 2CON (P < 0.001) and between 2IES and 2CON (P < 0.01). Higher RV was found in 2CON compared with 0CON and 2IES (both P < 0.001). Finally, the largest LyE was observed in 2IES compared with 0CON and 2CON (P = 0.02 and P = 0.01, respectively). CONCLUSION: Whereas RV seems to be dependent more on metabolic effort, LDS is affected by gradient to a greater extent. CLINICAL RELEVANCE: Running variability could be used to monitor external training load in marathon runners.


Subject(s)
Gait , Humans , Biomechanical Phenomena , Cross-Over Studies , Gait/physiology
2.
Phys Rev Lett ; 125(12): 126401, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016714

ABSTRACT

Despite its simple structure and low degree of electronic correlation, SrTiO_{3} (STO) features collective phenomena linked to charge transport and, ultimately, superconductivity, that are not yet fully explained. Thus, a better insight into the nature of the quasiparticles shaping the electronic and conduction properties of STO is needed. We studied the low-energy excitations of bulk STO and of the LaAlO_{3}/SrTiO_{3} two-dimensional electron gas (2DEG) by Ti L_{3} edge resonant inelastic x-ray scattering. In all samples, we find the hallmark of polarons in the form of intense dd+phonon excitations, and a decrease of the LO3-mode electron-phonon coupling when going from insulating to highly conducting STO single crystals and heterostructures. Both results are attributed to the dynamic screening of the large polaron self-induced polarization, showing that the low-temperature physics of STO and STO-based 2DEGs is dominated by large polaron quasiparticles.

3.
Article in English | MEDLINE | ID: mdl-32630373

ABSTRACT

The rhythmic control of the lower limb muscles influences the cycle-to-cycle variability during a walking task. The benefits of insoles, commonly used to improve the walking gait, have been little studied. Therefore, the aim of this study was to assess the walking gait variability and stability on different walking conditions (without shoes, WTS, with shoes, WS, with shoes and insoles, WSI) related to brain activity. Twelve participants randomly (WTS/WS/WSI) walked on a treadmill at 4 km/h for 10 min. Kinematic analysis (i.e., footstep and gait variability), brain activation (beta wave signal), rating of perceived exertion (RPE, CR-10 scale), and time domain measures of walking variability were assessed. The maximum Lyapunov exponent (LyE) on the stride cycle period's datasets was also calculated. Stride length and cycle calculated for all walking conditions were 61.59 ± 2.53/63.38 ± 1.43/64.09 ± 2.40 cm and 1.11 ± 0.03/1.14 ± 0.03/1.15 ± 0.04 s (F1,10 = 4.941/p = 0.01, F1,10 = 4.938/p = 0.012) for WTS, WS, WSI, respectively. Beta wave (F1,10 = 564.201/p = 0.0001) was higher in WTS compared to WS and WSI. Analysis of variance's (ANOVA) LyE showed a F1,10 = 3.209/p = 0.056, while post hoc analysis showed a significant effect between WS and WSI with p = 0.023, and nonsignificant effects between WTS and WS/WSI (p = 0.070/0.607), respectively. Small perturbations of the foot can influence the control of gait rhythmicity by increasing the variability in a dissipative deterministic regimen.


Subject(s)
Shoes , Walking , Biomechanical Phenomena , Foot , Gait , Humans
4.
Front Chem ; 7: 121, 2019.
Article in English | MEDLINE | ID: mdl-30937300

ABSTRACT

The recent development of eumelanin pigment-based blends integrating "classical" organic conducting materials is expanding the scope of eumelanin in bioelectronics. Beyond the achievement of high conductivity level, another major goal lays in the knowledge and feasible control of structure/properties relationship. We systematically investigated different hybrid materials prepared by in situ polymerization of the eumelanin precursor 5,6-dihydroxyindole (DHI) in presence of various amounts of graphene-like layers. Spectroscopic studies performed by solid state nuclear magnetic resonance (ss-NMR), x-ray photoemission, and absorption spectroscopies gave a strong indication of the direct impact that the integration of graphene-like layers into the nascent polymerized DHI-based eumelanin has on the structural organization of the pigment itself, while infrared, and photoemission spectroscopies indicated the occurrence of negligible changes as concerns the chemical units. A tighter packing of the constituent units could represent a strong factor responsible for the observed improved electrical conductivity of the hybrid materials, and could be possible exploited as a tool for electrical conductivity tuning.

5.
ACS Appl Mater Interfaces ; 4(9): 4491-8, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-22891711

ABSTRACT

Reduction of strongly oxidized carbon black by hydrazine hydrate yields water-insoluble graphene-like sheets that undergo to self-assembling in thin film on surfaces after drying. The height of a drop-casted graphene-like film was determined by atomic force microscopy (AFM) to be around 20 nm, corresponding to approximately 25 graphene-like layers. The oxidized carbon black and the corresponding reduced form were carefully characterized.

6.
Eur J Appl Physiol ; 112(8): 3161-5, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22183087

ABSTRACT

Variability of cycle-to-cycle duration during a pedaling task is probably related to the rhythmic control of the lower limb muscles as in gait. Although walking variability has been extensively studied for its clinical and physiological implications, pedaling variability has received little attention. The present contribution determines the variability of the cycling time during a 10-min exercise as a function of upper body position. Nine healthy males were required to pedal on cycle-ergometer at a self-selected speed for 10 min in two different upper body positions [hands on upper handlebars (UP) or lower handlebars (DP)]. Time domain measures of cycling variability [total standard deviation (SDtot), mean standard deviation cycle-to-cycle intervals over 100 cycles (SD100), standard deviation of the average cycle-to-cycle intervals over 100 cycles (SDA100)] were measured. Moreover, the same time domain measures were also calculated for heart rate in order to discriminate possible involvements of autonomic regulation. Finally, the structure of the cycle variations has been analyzed in the framework of deterministic chaos calculating the maximum Lyapunov exponents. Significant increases in cycle-to-cycle variability were found for SDtot, SD100 in DP compared to UP, whereas cardiac parameters and other cycling parameters were not changed in the two positions. Moreover, the maximum Lyapunov exponent was significantly more negative in DP. The results suggest that small perturbations of upper body position can influence the control of cycling rhythmicity by increasing the variability in a dissipative deterministic regimen.


Subject(s)
Bicycling , Muscle Contraction , Muscle, Skeletal/physiology , Periodicity , Posture , Adult , Exercise Test , Heart Rate , Humans , Lower Extremity , Male , Middle Aged , Motor Activity , Muscle Fatigue , Task Performance and Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...