Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 474, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212298

ABSTRACT

Single-atom imaging resolution of many-body quantum systems in optical lattices is routinely achieved with quantum-gas microscopes. Key to their great versatility as quantum simulators is the ability to use engineered light potentials at the microscopic level. Here, we employ dynamically varying microscopic light potentials in a quantum-gas microscope to study commensurate and incommensurate 1D systems of interacting bosonic Rb atoms. Such incommensurate systems are analogous to doped insulating states that exhibit atom transport and compressibility. Initially, a commensurate system with unit filling and fixed atom number is prepared between two potential barriers. We deterministically create an incommensurate system by dynamically changing the position of the barriers such that the number of available lattice sites is reduced while retaining the atom number. Our systems are characterised by measuring the distribution of particles and holes as a function of the lattice filling, and interaction strength, and we probe the particle mobility by applying a bias potential. Our work provides the foundation for preparation of low-entropy states with controlled filling in optical-lattice experiments.

2.
Phys Rev Lett ; 127(24): 243603, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34951775

ABSTRACT

We experimentally study the dynamics of weakly interacting Bose-Einstein condensates of cesium atoms in a 1D optical lattice with a periodic driving force. After a sudden start of the driving, we observe the formation of stable wave packets at the center of the first Brillouin zone (BZ) in momentum space, and we interpret these as Floquet solitons in periodically driven systems. The wave packets become unstable when we add a trapping potential along the lattice direction, leading to a redistribution of atoms within the BZ. The concept of a negative effective mass and the resulting changes to the interaction strength and effective trapping potential are used to explain the stability and the time evolution of the wave packets. We expect that similar states of matter waves exist for discrete breathers and other types of lattice solitons in periodically driven systems.

3.
Phys Rev Lett ; 125(18): 183602, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33196233

ABSTRACT

We study the evolution of a collisionally inhomogeneous matter wave in a spatial gradient of the interaction strength. Starting with a Bose-Einstein condensate with weak repulsive interactions in quasi-one-dimensional geometry, we monitor the evolution of a matter wave that simultaneously extends into spatial regions with attractive and repulsive interactions. We observe the formation and the decay of solitonlike density peaks, counterpropagating self-interfering wave packets, and the creation of cascades of solitons. The matter-wave dynamics is well reproduced in numerical simulations based on the nonpolynomial Schrödinger equation with three-body loss, allowing us to better understand the underlying behavior based on a wavelet transformation. Our analysis provides new understanding of collapse processes for solitons, and opens interesting connections to other nonlinear instabilities.

4.
Phys Rev Lett ; 123(12): 123602, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633971

ABSTRACT

We experimentally study the excitation modes of bright matter-wave solitons in a quasi-one-dimensional geometry. The solitons are created by quenching the interactions of a Bose-Einstein condensate of cesium atoms from repulsive to attractive in combination with a rapid reduction of the longitudinal confinement. A deliberate mismatch of quench parameters allows for the excitation of breathing modes of the emerging soliton and for the determination of its breathing frequency as a function of atom number and confinement. In addition, we observe signatures of higher-order solitons and the splitting of the wave packet after the quench. Our experimental results are compared to analytical predictions and to numerical simulations of the one-dimensional Gross-Pitaevskii equation.

5.
Rev Sci Instrum ; 89(12): 126102, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30599555

ABSTRACT

We present the design of an inexpensive and reliable mechanical laser shutter and its electronic driver. A camera diaphragm shutter unit with several sets of blades is utilized to provide fast blocking of laser light and protective shielding of the shutter mechanism up to a laser beam power of 1 W. The driver unit is based on an Arduino microcontroller with a motor-shield. Our objective was to strongly reduce construction effort and expenditure by limiting ourselves to a small number of modular parts, which are readily available. We measured opening and closing durations of less than 800 µs, and a timing jitter of less than 25 µs for the fastest set of blades. No degradation of the shutter performance was observed over 5·104 cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...