Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 317
Filter
2.
J Am Heart Assoc ; 13(10): e034493, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38761082

ABSTRACT

BACKGROUND: Lipoprotein (a) [Lp(a)] is a robust predictor of coronary heart disease outcomes, with targeted therapies currently under investigation. We aimed to evaluate the association of high Lp(a) with standard modifiable risk factors (SMuRFs) for incident first acute myocardial infarction (AMI). METHODS AND RESULTS: This retrospective study used the Mass General Brigham Lp(a) Registry, which included patients aged ≥18 years with an Lp(a) measurement between 2000 and 2019. Exclusion criteria were severe kidney dysfunction, malignant neoplasm, and prior known atherosclerotic cardiovascular disease. Diabetes, dyslipidemia, hypertension, and smoking were considered SMuRFs. High Lp(a) was defined as >90th percentile, and low Lp(a) was defined as <50th percentile. The primary outcome was fatal or nonfatal AMI. A combination of natural language processing algorithms, International Classification of Diseases (ICD) codes, and laboratory data was used to identify the outcome and covariates. A total of 6238 patients met the eligibility criteria. The median age was 54 (interquartile range, 43-65) years, and 45% were women. Overall, 23.7% had no SMuRFs, and 17.8% had ≥3 SMuRFs. Over a median follow-up of 8.8 (interquartile range, 4.2-12.8) years, the incidence of AMI increased gradually, with higher number of SMuRFs among patients with high (log-rank P=0.031) and low Lp(a) (log-rank P<0.001). Across all SMuRF subgroups, the incidence of AMI was significantly higher for patients with high Lp(a) versus low Lp(a). The risk of high Lp(a) was similar to having 2 SMuRFs. Following adjustment for confounders and number of SMuRFs, high Lp(a) remained significantly associated with the primary outcome (hazard ratio, 2.9 [95% CI, 2.0-4.3]; P<0.001). CONCLUSIONS: Among patients with no prior atherosclerotic cardiovascular disease, high Lp(a) is associated with significantly higher risk for first AMI regardless of the number of SMuRFs.


Subject(s)
Heart Disease Risk Factors , Lipoprotein(a) , Myocardial Infarction , Registries , Humans , Female , Lipoprotein(a)/blood , Male , Middle Aged , Myocardial Infarction/epidemiology , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Retrospective Studies , Aged , Incidence , Adult , Risk Assessment/methods , Biomarkers/blood , Risk Factors
3.
J Nucl Cardiol ; : 101854, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38606610

ABSTRACT

BACKGROUND: Myocardial flow reserve (MFR) by positron emission tomography (PET) is a validated measure of cardiovascular risk. Elevated resting rate pressure product (RPP = heart rate x systolic blood pressure) can cause high resting myocardial blood flow (MBF), resulting in reduced MFR despite normal/near-normal peak stress MBF. When resting MBF is high, it is not known if RPP-corrected MFR (MFRcorrected) helps reclassify CV risk. We aimed to study this question in patients without obstructive coronary artery disease (CAD). METHODS: We retrospectively studied patients referred for rest/stress cardiac PET at our center from 2006 to 2020. Patients with abnormal perfusion (summed stress score >3) or prior coronary artery bypass grafting (CABG) were excluded. MFRcorrected was defined as stress MBF/corrected rest MBF where corrected rest MBF = rest MBF x 10,000/RPP. The primary outcome was major cardiovascular events (MACE): cardiovascular death or myocardial infarction. Associations of MFR and MFRcorrected with MACE were assessed using unadjusted and adjusted Cox regression. RESULTS: 3276 patients were followed for a median of 7 (IQR 3-12) years. 1685 patients (51%) had MFR <2.0, and of those 366 (22%) had an MFR ≥2.0 after RPP correction. MFR <2.0 was associated with an increased absolute risk of MACE (HR 2.24 [1.79-2.81], P < 0.0001). Among patients with MFR <2.0, the risk of MACE was not statistically different between patients with an MFRcorrected ≥2.0 compared with those with MFRcorrected <2.0 (1.9% vs 2.3% MACE/year, HR 0.84 [0.63-1.13], P = 0.26) even after adjustment for confounders (P = 0.66). CONCLUSIONS: In patients without overt obstructive CAD and MFR< 2.0, there was no significant difference in cardiovascular risk between patients with discordant (≥2.0) and concordant (<2) MFR following RPP correction. This suggests that RPP-corrected MFR may not consistently provide accurate risk stratification in patients with normal perfusion and MFR <2.0. Stress MBF and uncorrected MFR should be reported to more reliably convey cardiovascular risk beyond perfusion results.

4.
Hypertension ; 81(6): 1272-1284, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563161

ABSTRACT

BACKGROUND: Preeclampsia is a pregnancy-specific hypertensive disorder associated with an imbalance in circulating proangiogenic and antiangiogenic proteins. Preclinical evidence implicates microvascular dysfunction as a potential mediator of preeclampsia-associated cardiovascular risk. METHODS: Women with singleton pregnancies complicated by severe antepartum-onset preeclampsia and a comparator group with normotensive deliveries underwent cardiac positron emission tomography within 4 weeks of delivery. A control group of premenopausal, nonpostpartum women was also included. Myocardial flow reserve, myocardial blood flow, and coronary vascular resistance were compared across groups. sFlt-1 (soluble fms-like tyrosine kinase receptor-1) and PlGF (placental growth factor) were measured at imaging. RESULTS: The primary cohort included 19 women with severe preeclampsia (imaged at a mean of 15.3 days postpartum), 5 with normotensive pregnancy (mean, 14.4 days postpartum), and 13 nonpostpartum female controls. Preeclampsia was associated with lower myocardial flow reserve (ß, -0.67 [95% CI, -1.21 to -0.13]; P=0.016), lower stress myocardial blood flow (ß, -0.68 [95% CI, -1.07 to -0.29] mL/min per g; P=0.001), and higher stress coronary vascular resistance (ß, +12.4 [95% CI, 6.0 to 18.7] mm Hg/mL per min/g; P=0.001) versus nonpostpartum controls. Myocardial flow reserve and coronary vascular resistance after normotensive pregnancy were intermediate between preeclamptic and nonpostpartum groups. Following preeclampsia, myocardial flow reserve was positively associated with time following delivery (P=0.008). The sFlt-1/PlGF ratio strongly correlated with rest myocardial blood flow (r=0.71; P<0.001), independent of hemodynamics. CONCLUSIONS: In this exploratory cross-sectional study, we observed reduced coronary microvascular function in the early postpartum period following preeclampsia, suggesting that systemic microvascular dysfunction in preeclampsia involves coronary microcirculation. Further research is needed to establish interventions to mitigate the risk of preeclampsia-associated cardiovascular disease.


Subject(s)
Coronary Circulation , Pre-Eclampsia , Vascular Endothelial Growth Factor Receptor-1 , Vascular Resistance , Humans , Female , Pre-Eclampsia/physiopathology , Pre-Eclampsia/blood , Pregnancy , Adult , Vascular Resistance/physiology , Coronary Circulation/physiology , Vascular Endothelial Growth Factor Receptor-1/blood , Microcirculation/physiology , Positron-Emission Tomography/methods , Placenta Growth Factor/blood , Postpartum Period , Severity of Illness Index , Fractional Flow Reserve, Myocardial/physiology , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Microvessels/physiopathology , Microvessels/diagnostic imaging
8.
J Am Coll Cardiol ; 83(9): 873-886, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38418000

ABSTRACT

BACKGROUND: Lipoprotein(a) [Lp(a)] is associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). However, whether the optimal Lp(a) threshold for risk assessment should differ based on baseline ASCVD status is unknown. OBJECTIVES: The purpose of this study was to assess the association between Lp(a) and major adverse cardiovascular events (MACE) among patients with and without baseline ASCVD. METHODS: We studied a retrospective cohort of patients with Lp(a) measured at 2 medical centers in Boston, Massachusetts, from 2000 to 2019. To assess the association of Lp(a) with incident MACE (nonfatal myocardial infarction [MI], nonfatal stroke, coronary revascularization, or cardiovascular mortality), Lp(a) percentile groups were generated with the reference group set at the first to 50th Lp(a) percentiles. Cox proportional hazards modeling was used to assess the association of Lp(a) percentile group with MACE. RESULTS: Overall, 16,419 individuals were analyzed with a median follow-up of 11.9 years. Among the 10,181 (62%) patients with baseline ASCVD, individuals in the 71st to 90th percentile group had a 21% increased hazard of MACE (adjusted HR: 1.21; P < 0.001), which was similar to that of individuals in the 91st to 100th group (adjusted HR: 1.26; P < 0.001). Among the 6,238 individuals without established ASCVD, there was a continuously higher hazard of MACE with increasing Lp(a), and individuals in the 91st to 100th Lp(a) percentile group had the highest relative risk with an adjusted HR of 1.93 (P < 0.001). CONCLUSIONS: In a large, contemporary U.S. cohort, elevated Lp(a) is independently associated with long-term MACE among individuals with and without baseline ASCVD. Our results suggest that the threshold for risk assessment may be different in primary vs secondary prevention cohorts.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Humans , Lipoprotein(a) , Cardiovascular Diseases/etiology , Retrospective Studies , Atherosclerosis/complications , Atherosclerosis/epidemiology , Risk Assessment , Risk Factors
9.
Circ Cardiovasc Imaging ; 17(1): e015858, 2024 01.
Article in English | MEDLINE | ID: mdl-38227694

ABSTRACT

BACKGROUND: Advanced chronic kidney disease is associated with high cardiovascular risk, even after kidney transplant. Pretransplant cardiac testing may identify patients who require additional assessment before transplant or would benefit from risk optimization. The objective of the current study was to determine the relative prognostic utility of pretransplant positron emission tomography (PET) and single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) for posttransplant major adverse cardiovascular events (MACEs). METHODS: We retrospectively followed patients who underwent MPI before kidney transplant for the occurrence of MACE after transplant including myocardial infarction, stroke, heart failure, and cardiac death. An abnormal MPI result was defined as a total perfusion deficit >5% of the myocardium. To determine associations of MPI results with MACE, we utilized Cox hazard regression with propensity weighting for PET versus SPECT with model factors, including demographics and cardiovascular risk factors. RESULTS: A total of 393 patients underwent MPI (208 PET and 185 SPECT) and were followed for a median of 5.9 years post-transplant. Most were male (58%), median age was 58 years, and there was a high burden of hypertension (88%) and diabetes (33%). A minority had abnormal MPI (n=58, 15%). In propensity-weighted hazard regression, abnormal PET result was associated with posttransplant MACE (hazard ratio, 3.02 [95% CI, 1.78-5.11]; P<0.001), while there was insufficient evidence of an association of abnormal SPECT result with MACE (1.39 [95% CI, 0.72-2.66]; P=0.33). The explained relative risk of the PET result was higher than the SPECT result (R2 0.086 versus 0.007). Normal PET was associated with the lowest risk of MACE (2.2%/year versus 3.6%/year for normal SPECT; P<0.001). CONCLUSIONS: Kidney transplant recipients are at high cardiovascular risk, despite a minority having obstructive coronary artery disease on MPI. PET MPI findings predict posttransplant MACE. Normal PET may better discriminate lower risk patients compared with normal SPECT, which should be confirmed in a larger prospective study.


Subject(s)
Coronary Artery Disease , Kidney Transplantation , Myocardial Perfusion Imaging , Humans , Male , Middle Aged , Female , Prospective Studies , Retrospective Studies , Kidney Transplantation/adverse effects , Myocardial Perfusion Imaging/methods , Tomography, Emission-Computed, Single-Photon/methods , Positron-Emission Tomography , Prognosis
11.
J Nucl Cardiol ; 31: 101779, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38215598

ABSTRACT

OBJECTIVES: The objective of this study was to determine the diagnostic performance of 15O-water positron emission tomography (PET) myocardial perfusion imaging to detect coronary artery disease (CAD) using the truth-standard of invasive coronary angiography (ICA) with fractional flow reserve (FFR) or instantaneous wave-Free Ratio (iFR) or coronary computed tomography angiogram (CCTA). BACKGROUND: 15O-water has a very high first-pass extraction that allows accurate quantification of myocardial blood flow and detection of flow-limiting CAD. However, the need for an on-site cyclotron and lack of automated production at the point of care and relatively complex image analysis protocol has limited its clinical use to date. METHODS: The RAPID WATER FLOW study is an open-label, multicenter, prospective investigation of the accuracy of 15O-water PET to detect obstructive angiographic and physiologically significant stenosis in patients with suspected CAD. The study will include the use of an automated system for producing, dosing, and injecting 15O-water and enrolling approximately 215 individuals with suspected CAD at approximately 10 study sites in North America and Europe. The primary endpoint of the study is the diagnostic sensitivity and specificity of the 15O-water PET study using the truth-standard of ICA with FFR or iFR to determine flow-limiting stenosis, or CCTA to rule out CAD and incorporating a quantitative analytic platform developed for the 15O-water PET acquisitions. Sensitivity and specificity are to be considered positive if the lower bound of the 95% confidence interval is superior to the threshold of 60% for both, consistent with prior registration studies. Subgroup analyses include assessments of diagnostic sensitivity, specificity, and accuracy in female, obese, and diabetic individuals, as well as in those with multivessel disease. All enrolled individuals will be followed for adverse and serious adverse events for up to 32 hours after the index PET scan. The study will have >90% power (one-sided test, α = 0.025) to test the hypothesis that sensitivity and specificity of 15O-water PET are both >60%. CONCLUSIONS: The RAPID WATER FLOW study is a prospective, multicenter study to determine the diagnostic sensitivity and specificity of 15O-water PET as compared to ICA with FFR/iFR or CCTA. This study will introduce several novel aspects to imaging registration studies, including a more relevant truth standard incorporating invasive physiologic indexes, coronary CTA to qualify normal individuals for eligibility, and a more quantitative approach to image analysis than has been done in prior pivotal studies. CLINICAL TRIAL REGISTRATION INFORMATION: Clinical-Trials.gov (#NCT05134012).


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Perfusion Imaging , Humans , Female , Prospective Studies , Fractional Flow Reserve, Myocardial/physiology , Constriction, Pathologic , Water , Coronary Angiography/methods , Perfusion , Predictive Value of Tests , Myocardial Perfusion Imaging/methods , Computed Tomography Angiography/methods
12.
Eur Heart J Cardiovasc Imaging ; 25(5): 687-697, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38193678

ABSTRACT

AIMS: In systemic light-chain (AL) amyloidosis, quantification of right ventricular (RV) amyloid burden has been limited and the pathogenesis of RV dysfunction is poorly understood. Using 18F-florbetapir positron emission tomography/computed tomography (PET/CT), we aimed to quantify RV amyloid; correlate RV amyloid with RV structure and function; determine the independent contributions of RV, left ventricular (LV), and lung amyloid to RV function; and associate RV amyloid with major adverse cardiac events (MACE: death, heart failure hospitalization, cardiac transplantation). METHODS AND RESULTS: We prospectively enrolled 106 participants with AL amyloidosis (median age 62 years, 55% males) who underwent 18F-florbetapir PET/CT, magnetic resonance imaging, and echocardiography. 18F-florbetapir PET/CT identified RV amyloid in 63% of those with and 40% of those without cardiac involvement by conventional criteria. RV amyloid burden correlated with RV ejection fraction (EF), RV free wall longitudinal strain (FWLS), RV wall thickness, RV mass index, N-terminal pro-brain natriuretic peptide, troponin T, LV amyloid, and lung amyloid (each P < 0.001). In multivariable analysis, RV amyloid burden, but not LV or lung amyloid burden, predicted RV dysfunction (EF P = 0.014; FWLS P < 0.001). During a median follow-up of 28 months, RV amyloid burden predicted MACE (P < 0.001). CONCLUSION: This study shows for the first time that 18F-florbetapir PET/CT identifies early RV amyloid in systemic AL amyloidosis prior to alterations in RV structure and function. Increasing RV amyloid on 18F-florbetapir PET/CT is associated with worse RV structure and function, predicts RV dysfunction, and predicts MACE. These results imply a central role for RV amyloid in the pathogenesis of RV dysfunction.


Subject(s)
Aniline Compounds , Ethylene Glycols , Positron Emission Tomography Computed Tomography , Ventricular Dysfunction, Right , Humans , Male , Female , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Prospective Studies , Ventricular Dysfunction, Right/diagnostic imaging , Aged , Immunoglobulin Light-chain Amyloidosis/diagnostic imaging , Immunoglobulin Light-chain Amyloidosis/complications , Radiopharmaceuticals , Heart Ventricles/diagnostic imaging
13.
EBioMedicine ; 99: 104930, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168587

ABSTRACT

BACKGROUND: Myocardial perfusion imaging (MPI) is one of the most common cardiac scans and is used for diagnosis of coronary artery disease and assessment of cardiovascular risk. However, the large majority of MPI patients have normal results. We evaluated whether unsupervised machine learning could identify unique phenotypes among patients with normal scans and whether those phenotypes were associated with risk of death or myocardial infarction. METHODS: Patients from a large international multicenter MPI registry (10 sites) with normal perfusion by expert visual interpretation were included in this cohort analysis. The training population included 9849 patients, and external testing population 12,528 patients. Unsupervised cluster analysis was performed, with separate training and external testing cohorts, to identify clusters, with four distinct phenotypes. We evaluated the clinical and imaging features of clusters and their associations with death or myocardial infarction. FINDINGS: Patients in Clusters 1 and 2 almost exclusively underwent exercise stress, while patients in Clusters 3 and 4 mostly required pharmacologic stress. In external testing, the risk for Cluster 4 patients (20.2% of population, unadjusted hazard ratio [HR] 6.17, 95% confidence interval [CI] 4.64-8.20) was higher than the risk associated with pharmacologic stress (HR 3.03, 95% CI 2.53-3.63), or previous myocardial infarction (HR 1.82, 95% CI 1.40-2.36). INTERPRETATION: Unsupervised learning identified four distinct phenotypes of patients with normal perfusion scans, with a significant proportion of patients at very high risk of myocardial infarction or death. Our results suggest a potential role for patient phenotyping to improve risk stratification of patients with normal imaging results. FUNDING: This work was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R35HL161195 to PS]. The REFINE SPECT database was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R01HL089765 to PS]. MCW was supported by the British Heart Foundation [FS/ICRF/20/26002].


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Humans , Coronary Artery Disease/diagnostic imaging , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/etiology , Perfusion , Prognosis , Risk Factors , Unsupervised Machine Learning , Retrospective Studies
15.
JACC Cardiovasc Imaging ; 17(2): 179-191, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37768241

ABSTRACT

BACKGROUND: Body mass index (BMI) is a controversial marker of cardiovascular prognosis, especially in women. Coronary microvascular dysfunction (CMD) is prevalent in obese patients and a better discriminator of risk than BMI, but its association with body composition is unknown. OBJECTIVES: The authors used a deep learning model for body composition analysis to investigate the relationship between CMD, skeletal muscle (SM), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT), and their contribution to adverse outcomes in patients referred for evaluation of coronary artery disease. METHODS: Consecutive patients (n = 400) with normal perfusion and preserved left ventricular ejection fraction on cardiac stress positron emission tomography were followed (median, 6.0 years) for major adverse events, including death and hospitalization for myocardial infarction or heart failure. Coronary flow reserve (CFR) was quantified as stress/rest myocardial blood flow from positron emission tomography. SM, SAT, and VAT cross-sectional areas were extracted from abdominal computed tomography at the third lumbar vertebra using a validated automated algorithm. RESULTS: Median age was 63, 71% were female, 50% non-White, and 50% obese. Compared with the nonobese, patients with obesity (BMI: 30.0-68.4 kg/m2) had higher SAT, VAT, and SM, and lower CFR (all P < 0.001). In adjusted analyses, decreased SM but not increased SAT or VAT was significantly associated with CMD (CFR <2; OR: 1.38; 95% CI: 1.08-1.75 per -10 cm2/m2 SM index; P < 0.01). Both lower CFR and SM, but not higher SAT or VAT, were independently associated with adverse events (HR: 1.83; 95% CI: 1.25-2.68 per -1 U CFR and HR: 1.53; 95% CI: 1.20-1.96 per -10 cm2/m2 SM index, respectively; P < 0.002 for both), especially heart failure hospitalization (HR: 2.36; 95% CI: 1.31-4.24 per -1 U CFR and HR: 1.87; 95% CI: 1.30-2.69 per -10 cm2/m2 SM index; P < 0.004 for both). There was a significant interaction between CFR and SM (adjusted P = 0.026), such that patients with CMD and sarcopenia demonstrated the highest rate of adverse events, especially among young, female, and obese patients (all P < 0.005). CONCLUSIONS: In a predominantly female cohort of patients without flow-limiting coronary artery disease, deficient muscularity, not excess adiposity, was independently associated with CMD and future adverse outcomes, especially heart failure. In patients with suspected ischemia and no obstructive coronary artery disease, characterization of lean body mass and coronary microvascular function may help to distinguish obese phenotypes at risk for cardiovascular events.


Subject(s)
Coronary Artery Disease , Heart Failure , Humans , Female , Middle Aged , Male , Coronary Artery Disease/diagnostic imaging , Stroke Volume , Risk Factors , Ventricular Function, Left , Predictive Value of Tests , Heart Failure/diagnostic imaging , Heart Failure/epidemiology , Obesity/complications , Obesity/diagnosis , Obesity/epidemiology
16.
J Am Heart Assoc ; : e029541, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37947105

ABSTRACT

BACKGROUND: HIV infection and abacavir-containing antiretroviral regimens are associated with vascular endothelial dysfunction and increased cardiovascular risk. Positron emission tomography (PET)-derived myocardial blood flow reserve (MBFR), the ratio of vasodilator stress to rest myocardial blood flow, is a well-validated measure of coronary microvascular health and marker of cardiovascular risk. Our objective was to compare MBFR among people with HIV (PWH) with matched non-HIV controls and to assess whether switching from dolutegravir/lamivudine/abacavir to the non-abacavir regimen bictegravir/emtricitabine/tenofovir alafenamide (TAF) would improve MBFR. METHODS AND RESULTS: Thirty-seven PWH were 1:2 matched on cardiovascular risk factors to 75 people without HIV, and MBFR corrected for differences in resting hemodynamics was compared in a cross-sectional design. PWH were majority men (68%) with a mean age of 56 years. Mean stress myocardial blood flow (1.83 mL/min per g [95% CI, 1.68-1.98] versus 2.40 mL/min per g [95% CI, 2.25-2.54]; P<0.001) and MBFR (2.18 [95% CI, 1.96-2.40] versus 2.68 [95% CI, 2.47-2.89]; P=0.002) was significantly lower in PWH than in people without HIV. In a single-arm, multicenter trial, a subset of 25 PWH who were virologically suppressed on dolutegravir/lamivudine/abacavir underwent positron emission tomography myocardial perfusion imaging at baseline and after switching to bictegravir/emtricitabine/TAF. MBFR was unchanged after switching to bictegravir/emtricitabine/TAF for a mean of 27 weeks (MBFR, 2.34 to 2.29; P=0.61), except in PWH with impaired MBFR at baseline (<2.00; N=6) in whom MBFR increased from 1.58 to 2.02 (P=0.02). CONCLUSIONS: PWH had reduced coronary microvascular function compared with controls without HIV. Coronary microvascular function did not improve after switching from dolutegravir/lamivudine/abacavir to bictegravir/emtricitabine/TAF. REGISTRATION: URL: https://www.clinicaltrials.gov; unique identifier: NCT03656783.

20.
medRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873250

ABSTRACT

Aims: In systemic light-chain (AL) amyloidosis, cardiac involvement portends poor prognosis. Using myocardial characteristics on magnetic resonance imaging (MRI), this study aimed to detect early myocardial alterations, to analyze temporal changes with plasma cell therapy, and to predict risk of major adverse cardiac events (MACE) in AL amyloidosis. Methods and Results: Participants with recently diagnosed AL amyloidosis were prospectively enrolled. Presence of AL cardiomyopathy (AL-CMP vs. AL-non-CMP) was determined by abnormal cardiac biomarkers. MRI was performed at baseline and 6 months, with 12-month imaging in AL-CMP cohort. MACE was defined as all-cause death, heart failure hospitalization, or cardiac transplantation. Mayo AL stage was based on troponin T, NT-proBNP, and difference in free light chains. The study cohort included 80 participants (median age 62 years, 58% males). Median left ventricular extracellular volume (ECV) was significantly higher in AL-CMP (53% vs. 30%, p<0.001). ECV was abnormal (>32%) in all AL-CMP and in 47% of AL-non-CMP. ECV tended to increase at 6 months and decreased significantly from 6 to 12 months in AL-CMP (median -3%, p=0.011). ECV was strongly associated with MACE (p<0.001), and improved MACE prediction when added to Mayo AL stage (p=0.002). ECV≤32% identified a cohort without MACE, while ECV>48% identified a cohort with 74% MACE. Conclusions: In AL amyloidosis, ECV detects subclinical cardiomyopathy. ECV tends to increase from baseline to 6 months and decreases significantly from 6 and 12 months of plasma cell therapy in AL-CMP. ECV provides excellent risk stratification and offers additional prognostic performance over Mayo AL stage.

SELECTION OF CITATIONS
SEARCH DETAIL
...