Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3370, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336810

ABSTRACT

Microfabricated organ-on-a-chips are rapidly becoming the gold standard for the testing of safety and efficacy of therapeutics. A broad range of designs has emerged, but recreating microvascularised tissue models remains difficult in many cases. This is particularly relevant to mimic the systemic delivery of therapeutics, to capture the complex multi-step processes associated with trans-endothelial transport or diffusion, uptake by targeted tissues and associated metabolic response. In this report, we describe the formation of microvascularised cardiac spheroids embedded in microfluidic chips. Different protocols used for embedding spheroids within vascularised multi-compartment microfluidic chips were investigated first to identify the importance of the spheroid processing, and co-culture with pericytes on the integration of the spheroid within the microvascular networks formed. The architecture of the resulting models, the expression of cardiac and endothelial markers and the perfusion of the system was then investigated. This confirmed the excellent stability of the vascular networks formed, as well as the persistent expression of cardiomyocyte markers such as cTNT and the assembly of striated F-actin, myosin and α-actinin cytoskeletal networks typically associated with contractility and beating. The ability to retain beating over prolonged periods of time was quantified, over 25 days, demonstrating not only perfusability but also functional performance of the tissue model. Finally, as a proof-of-concept of therapeutic testing, the toxicity of one therapeutic associated with cardiac disfunction was evaluated, identifying differences between direct in vitro testing on suspended spheroids and vascularised models.


Subject(s)
Cell Culture Techniques , Spheroids, Cellular , Cell Culture Techniques/methods , Microfluidics/methods , Coculture Techniques , Lab-On-A-Chip Devices
2.
Sci Rep ; 13(1): 5729, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029151

ABSTRACT

Recapitulating the normal physiology of the microvasculature is pivotal in the development of more complex in-vitro models and organ-on-chip designs. Pericytes are an important component of the vasculature, promoting vessel stability, inhibiting vascular permeability and maintaining the vascular hierarchical architecture. The use of such co-culture for the testing of therapeutics and nanoparticle safety is increasingly considered for the validation of therapeutic strategies. This report presents the use of a microfluidic model for such applications. Interactions between endothelial cells and pericytes are first explored. We identify basal conditions required to form stable and reproducible endothelial networks. We then investigate interactions between endothelial cells and pericytes via direct co-culture. In our system, pericytes prevented vessel hyperplasia and maintained vessel length in prolonged culture (> 10 days). In addition, these vessels displayed barrier function and expression of junction markers associated with vessel maturation, including VE-cadherin, ß-catenin and ZO-1. Furthermore, pericytes maintained vessel integrity following stress (nutrient starvation) and prevented vessel regression, in contrast to the striking dissociation of networks in endothelial monocultures. This response was also observed when endothelial/pericyte co-cultures were exposed to high concentrations of moderately toxic cationic nanoparticles used for gene delivery. This study highlights the importance of pericytes in protecting vascular networks from stress and external agents and their importance to the design of advanced in-vitro models, including for the testing of nanotoxicity, to better recapitulate physiological response and avoid false positives.


Subject(s)
Nanoparticles , Pericytes , Pericytes/metabolism , Endothelial Cells , Microvessels/metabolism , Capillary Permeability/physiology , Coculture Techniques
3.
F1000Res ; 12: 439, 2023.
Article in English | MEDLINE | ID: mdl-38434654

ABSTRACT

Metastasis occurs when cancer cells leave the primary tumour and travel to a secondary site to form a new lesion. The tumour microenvironment (TME) is recognised to greatly influence this process, with for instance the vascular system enabling the dissemination of the cells into other tissues. However, understanding the exact role of these microenvironmental cells during metastasis has proven challenging. Indeed, in vitro models often appear too simplistic, and the study of the interactions between different cell types in a 3D space is limited. On the other hand, even though in vivo models incorporate the TME, observing cells in real-time to understand their exact role is difficult. Horizontal compartmentalised microfluidic models are a promising new platform for metastasis studies. These devices, composed of adjacent microchannels, can incorporate multiple cell types within a 3D space. Furthermore, the transparency and thickness of these models also enables high quality real-time imaging to be performed. This paper demonstrates how these devices can be successfully used for oral squamous cell carcinoma (OSCC) metastasis studies, focusing on the role of the vascular system in this process. Conditions for co-culture of OSCC cells and endothelial cells have been determined and staining protocols optimised. Furthermore, several imaging analysis techniques for these models are described, enabling precise segmentation of the different cell types on the images as well as accurate assessment of their phenotype. These methods can be applied to any study aiming to understand the role of microenvironmental cell types in cancer metastatic dissemination, and overcome several challenges encountered with current in vitro and in vivo models. Hence, this new in vitro model capable of recapitulating important aspects of the cellular complexity of human metastatic dissemination can ultimately contribute to replacing animal studies in this field.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Animals , Humans , Endothelial Cells , Microfluidics , Coculture Techniques , Tumor Microenvironment
4.
Front Bioeng Biotechnol ; 10: 915702, 2022.
Article in English | MEDLINE | ID: mdl-35928950

ABSTRACT

Tissue-engineered skin constructs have been under development since the 1980s as a replacement for human skin tissues and animal models for therapeutics and cosmetic testing. These have evolved from simple single-cell assays to increasingly complex models with integrated dermal equivalents and multiple cell types including a dermis, epidermis, and vasculature. The development of micro-engineered platforms and biomaterials has enabled scientists to better recreate and capture the tissue microenvironment in vitro, including the vascularization of tissue models and their integration into microfluidic chips. However, to date, microvascularized human skin equivalents in a microfluidic context have not been reported. Here, we present the design of a novel skin-on-a-chip model integrating human-derived primary and immortalized cells in a full-thickness skin equivalent. The model is housed in a microfluidic device, in which a microvasculature was previously established. We characterize the impact of our chip design on the quality of the microvascular networks formed and evidence that this enables the formation of more homogenous networks. We developed a methodology to harvest tissues from embedded chips, after 14 days of culture, and characterize the impact of culture conditions and vascularization (including with pericyte co-cultures) on the stratification of the epidermis in the resulting skin equivalents. Our results indicate that vascularization enhances stratification and differentiation (thickness, architecture, and expression of terminal differentiation markers such as involucrin and transglutaminase 1), allowing the formation of more mature skin equivalents in microfluidic chips. The skin-on-a-chip tissue equivalents developed, because of their realistic microvasculature, may find applications for testing efficacy and safety of therapeutics delivered systemically, in a human context.

5.
Biomolecules ; 12(6)2022 06 16.
Article in English | MEDLINE | ID: mdl-35740962

ABSTRACT

The extracellular matrix (ECM) is a complex mixture of structural proteins, proteoglycans, and signaling molecules that are essential for tissue integrity and homeostasis. While a number of recent studies have explored the use of decellularized ECM (dECM) as a biomaterial for tissue engineering, the complete composition, structure, and mechanics of these materials remain incompletely understood. In this study, we performed an in-depth characterization of skin-derived dECM biomaterials for human skin equivalent (HSE) models. The dECM materials were purified from porcine skin, and through mass spectrometry profiling, we quantified the presence of major ECM molecules, including types I, III, and VI collagen, fibrillin, and lumican. Rheological analysis demonstrated the sol-gel and shear-thinning properties of dECM materials, indicating their physical suitability as a tissue scaffold, while electron microscopy revealed a complex, hierarchical structure of nanofibers in dECM hydrogels. The dECM materials were compatible with advanced biofabrication techniques, including 3D printing within a gelatin microparticle support bath, printing with a sacrificial material, or blending with other ECM molecules to achieve more complex compositions and structures. As a proof of concept, we also demonstrate how dECM materials can be fabricated into a 3D skin wound healing model using 3D printing. Skin-derived dECM therefore represents a complex and versatile biomaterial with advantageous properties for the fabrication of next-generation HSEs.


Subject(s)
Decellularized Extracellular Matrix , Tissue Engineering , Animals , Biocompatible Materials/chemistry , Extracellular Matrix/metabolism , Humans , Swine , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Wound Healing
6.
Biomacromolecules ; 21(12): 4663-4672, 2020 12 14.
Article in English | MEDLINE | ID: mdl-32830955

ABSTRACT

Dynamic photoresponsive synthetic hydrogels offer important advantages for biomaterials design, from the ability to cure hydrogels and encapsulate cells in situ to the light-mediated control of cell-spreading and tissue formation. We report the facile and effective photocuring and photoremodeling of disulfide-cross-linked hyaluronic acid hydrogels, based on photo-oxidation of corresponding thiol residues and their radical-mediated photodegradation. We find that the mechanical properties of disulfide hydrogels and the extent of their photoremodeling can be tuned by controlling the photo-oxidation and photodegradation reactions, respectively. This enables not only the photopatterning of the mechanical properties of hydrogels but also their self-healing and photomediated healing. Finally, we demonstrate the ability to encapsulate mesenchymal stromal cells within these materials and to regulate their protrusion and spreading in 3D matrices by controlling the mechanical properties of the disulfide networks. Therefore, synthetically accessible photoconfigurable disulfide hydrogels offer interesting opportunities for the design of soft biomaterials and the regulation of cell encapsulation and matrix remodeling for tissue engineering.


Subject(s)
Hyaluronic Acid , Hydrogels , Biocompatible Materials , Disulfides , Sulfhydryl Compounds
7.
Biomaterials ; 232: 119683, 2020 02.
Article in English | MEDLINE | ID: mdl-31927180

ABSTRACT

The nanotopography and nanoscale geometry of the extra-cellular matrix (ECM) are important regulators of cell adhesion, motility and fate decision. However, unlike the sensing of matrix mechanics and ECM density, the molecular processes regulating the direct sensing of the ECM nanotopography and nanoscale geometry are not well understood. Here, we use nanotopographical patterns generated via electrospun nanofibre lithography (ENL) to investigate the mechanisms of nanotopography sensing by cells. We observe the dysregulation of actin dynamics, resulting in the surprising formation of actin foci. This alteration of actin organisation is regulated by myosin contractility but independent of adapter proteins such as vinculin. This process is highly dependent on differential integrin expression as ß3 integrin expressing cells, more sensitive to nanopattern dimensions than ß1 integrin expressing cells, also display increased perturbation of actin assembly and actin foci formation. We propose that, in ß3 integrin expressing cells, contractility results in the destabilisation of nanopatterned actin networks, collapsing into foci and sequestering regulators of actin dynamics such as cofilin that orchestrate disassembly. Therefore, in contrast to the sensing of substrate mechanics and ECM ligand density, which are directly orchestrated by focal adhesion assembly, we propose that nanotopography sensing is regulated by a long-range sensing mechanism, remote from focal adhesions and mediated by the actin architecture.


Subject(s)
Actin Depolymerizing Factors , Actins , Cell Adhesion , Extracellular Matrix , Actin Cytoskeleton , Focal Adhesions , Myosins
8.
ACS Nano ; 12(9): 9206-9213, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30178996

ABSTRACT

The culture of adherent cells is overwhelmingly relying on the use of solid substrates to support cell adhesion. Indeed, it is typically thought that relatively strong bulk mechanical properties (bulk moduli in the range of kPa to GPa) are essential to promote cell adhesion and, in turn, regulate cell expansion and fate decision. In this report, we show that adherent stem cells such as mesenchymal stem cells and primary keratinocytes can be cultured at the surface of liquid substrates and that this phenomenon is mediated by the assembly of polymer nanosheets at the liquid-liquid interface. We use interfacial rheology to quantify this assembly and demonstrate the strong mechanical properties of such nanosheets. Importantly, we show that cell adhesion to such quasi-2D materials is mediated by the classical integrin/acto-myosin machinery, despite the absence of bulk mechanical properties of the underlying liquid substrate. Finally, we show that stem cell proliferation and fate decision are also regulated by the mechanical properties of these self-assembled protein nanosheets. Liquid substrates offer attractive features for the culture of adherent cells and stem cells, and the development of novel stem cell technologies, such as liquid-liquid systems, are particularly well-adapted to automated parallel processing and scale up.


Subject(s)
Keratinocytes/cytology , Mesenchymal Stem Cells/cytology , Nanostructures/chemistry , Polymers/chemistry , Cell Proliferation , Cells, Cultured , Humans , Particle Size , Rheology , Surface Properties
9.
Langmuir ; 34(34): 10019-10027, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30032621

ABSTRACT

Polymer brushes are particularly performant antifouling coatings, owing to their high grafting density that prevents unwanted biomacromolecules to diffuse through the coating and adhere to the underlying substrate. In addition to this structural feature, polymer brushes require a relatively high level of hydrophilicity and a globally neutral structure to display ultrahigh protein resistance. Poly(2-alkyl-2-oxaolines) are attractive building blocks for such coatings as they can display relatively high hydrophilicity, owing to their amide repeat units, but can also be side-chain and end-chain functionalized relatively readily. However, poly(2-alkyl-2-oxazolines) have not yet been introduced through a radical-mediated grafting from polymer brush structure that would confer the high level of grafting density that is the hallmark of highly protein resistant brushes. Here, we present the formation of a series of poly(oligo(2-alkyl-2-oxazoline)methacrylate) brushes generated via a grafting from approach, via atom transfer radical polymerization. We characterize the chemical structure of the resulting coatings via ellipsometry, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. We show that allyl end groups can be introduced as a side chain of these brushes to allow functionalization via thiol-ene chemistry. We demonstrate the excellent protein resistance of these coatings in single protein solutions as well as serum solutions at concentration typically used for cell culture. Finally, we demonstrate the feasibility of using these brushes for the micropatterning of cells and the generation of cell-based assays.

10.
Nano Lett ; 18(3): 1946-1951, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29411615

ABSTRACT

Adherent cell culture typically requires cell spreading at the surface of solid substrates to sustain the formation of stable focal adhesions and assembly of a contractile cytoskeleton. However, a few reports have demonstrated that cell culture is possible on liquid substrates such as silicone and fluorinated oils, even displaying very low viscosities (0.77 cSt). Such behavior is surprising as low viscosity liquids are thought to relax much too fast (

Subject(s)
Cell Adhesion , Nanostructures/chemistry , Proteins/chemistry , Adsorption , Animals , Biocompatible Materials/chemistry , Biomechanical Phenomena , Cattle , Cell Line , Cell Proliferation , Halogenation , Humans , Microscopy, Atomic Force , Nanostructures/ultrastructure , Oils/chemistry , Serum Albumin, Bovine/chemistry , Surface Properties , Surface-Active Agents/chemistry , Viscosity
11.
Biomacromolecules ; 19(5): 1445-1455, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29294284

ABSTRACT

Thiol-ene radical coupling is increasingly used for the biofunctionalization of biomaterials. Thiol-ene chemistry presents interesting features that are particularly attractive for platforms requiring specific reactions with peptides or proteins and the patterning of cells, such as reactivity in physiological conditions and photoactivation. In this work, we synthesized alkene-functionalized (allyl and norbornene residues) antifouling polymer brushes (based on poly(oligoethylene glycol methacrylate)) and studied thiol-ene coupling with a series of thiols including cell adhesive peptides RGD and REDV. The adhesion of umbilical vein endothelial cells (HUVECs) to these interfaces was studied and highlighted the absence of specific integrin engagement to REDV, in contrast to the high level of cell spreading observed on RGD-functionalized polymer brushes. This revealed that α4ß1 integrins (binding to REDV sequences) are not sufficient on their own to sustain HUVEC spreading, in contrast to αvß3 and α5ß1 integrins. In addition, we photopatterned peptides at the surface of poly(oligoethylene glycol methacrylate) (POEGMA) brushes and characterized the quality of the resulting arrays by epifluorescence microscopy and atomic force microscopy (AFM). This allowed the formation of cell patterns and demonstrated the potential of thiol-ene based photopatterning for the design of cell microarrays.


Subject(s)
Biocompatible Materials/chemistry , Cell Adhesion , Human Umbilical Vein Endothelial Cells/drug effects , Tissue Array Analysis/methods , Human Umbilical Vein Endothelial Cells/physiology , Humans , Methacrylates/chemistry , Oligopeptides/chemistry
12.
Acta Biomater ; 50: 280-292, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27940195

ABSTRACT

The nanoscale geometry and topography of the extra-cellular matrix (ECM) is an important parameter controlling cell adhesion and phenotype. Similarly, integrin expression and the geometrical maturation of adhesions they regulate have been correlated with important changes in cell spreading and phenotype. However, how integrin expression controls the nanoscale sensing of the ECM geometry is not clearly understood. Here we develop a new nanopatterning technique, electrospun nanofiber lithography (ENL), which allows the production of a quasi-2D fibrous nanopattern with controlled dimensions (250-1000nm) and densities. ENL relies on electrospun fibres to act as a mask for the controlled growth of protein-resistant polymer brushes. SEM, AFM and immunofluorescence imaging were used to characterise the resulting patterns and the adsorption of the extra-cellular matrix protein fibronectin to the patterned fibres. The control of adhesion formation was studied, as well as the remodelling and deposition of novel matrix. Cell spreading was found to be regulated by the size of fibres, similarly to previous observations made on circular nanopatterns. However, cell shape and polarity were more significantly affected. These changes correlated with important cytoskeleton reorganisation, with a gradual decrease in stress fibre formation as the pattern dimensions decrease. Finally, the differential expression of αvß3 and α5ß1 integrins in engineered cell lines was found to be an important mediator of cell sensing of the nanoscale geometry of the ECM. STATEMENT OF SIGNIFICANCE: The novel nanofiber patterns developed in this study, via ENL, mimic the geometry and continuity of natural matrices found in the stroma of tissues, whilst preserving a quasi-2D character (to facilitate imaging and for comparison with other 2D systems such as micropatterned monolayers and circular nanopatches generated by colloidal lithography). These results demonstrate that the nanoscale geometry of the ECM plays an important role in regulating cell adhesion and that this is modulated by integrin expression. This is an important finding as it implies that the knowledge of the biochemical context underlying the integrin-mediated adhesive machinery of specific cell types should allow better design of biomaterials and biointerfaces. Indeed, changes in integrin expression are often associated with the control of cell proliferation and differentiation.


Subject(s)
Extracellular Matrix/metabolism , Integrins/metabolism , Nanoparticles/chemistry , Adsorption , Cell Adhesion , Cell Count , Cell Movement , Cell Shape , Focal Adhesions/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Microscopy, Fluorescence , Nanofibers/chemistry , Nanofibers/ultrastructure , Polyethylene Glycols/chemistry
13.
Acta Biomater ; 30: 26-48, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26596568

ABSTRACT

The chemistry, geometry, topography and mechanical properties of biomaterials modulate biochemical signals (in particular ligand-receptor binding events) that control cells-matrix interactions. In turn, the regulation of cell adhesion by the biochemical and physical properties of the matrix controls cell phenotypes such as proliferation, motility and differentiation. In particular, nanoscale geometrical, topographical and mechanical properties of biomaterials are essential to achieve control of the cell-biomaterials interface. The design of such nanoscale architectures and platforms requires understanding the molecular mechanisms underlying adhesion formation and the assembly of the actin cytoskeleton. This review presents some of the important molecular mechanisms underlying cell adhesion to biomaterials mediated by integrins and discusses the nanoscale engineered platforms used to control these processes. Such nanoscale understanding of the cell-biomaterials interface offers exciting opportunities for the design of biomaterials and their application to the field of tissue engineering. STATEMENT OF SIGNIFICANCE: Biomaterials design is important in the fields of regenerative medicine and tissue engineering, in particular to allow the long term expansion of stem cells and the engineering of scaffolds for tissue regeneration. Cell adhesion to biomaterials often plays a central role in regulating cell phenotype. It is emerging that physical properties of biomaterials, and more generally the microenvironment, regulate such behaviour. In particular, cells respond to nanoscale physical properties of their matrix. Understanding how such nanoscale physical properties control cell adhesion is therefore essential for biomaterials design. To this aim, a deeper understanding of molecular processes controlling cell adhesion, but also a greater control of matrix engineering is required. Such multidisciplinary approaches shed light on some of the fundamental mechanisms via which cell adhesions sense their nanoscale physical environment.


Subject(s)
Actin Cytoskeleton/metabolism , Biocompatible Materials/chemistry , Cellular Microenvironment , Extracellular Matrix/chemistry , Nanostructures/chemistry , Animals , Cell Adhesion , Humans , Regenerative Medicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...