Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; : 101619, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38897206

ABSTRACT

Liver-directed adeno-associated viral (AAV) vector-mediated homology-independent targeted integration (AAV-HITI) by CRISPR-Cas9 at the highly transcribed albumin locus is under investigation to provide sustained transgene expression following neonatal treatment. We show that targeting the 3' end of the albumin locus results in productive integration in about 15% of mouse hepatocytes achieving therapeutic levels of systemic proteins in two mouse models of inherited diseases. We demonstrate that full-length HITI donor DNA is preferentially integrated upon nuclease cleavage and that, despite partial AAV genome integrations in the target locus, no gross chromosomal rearrangements or insertions/deletions at off-target sites are found. In line with this, no evidence of hepatocellular carcinoma is observed within the 1-year follow-up. Finally, AAV-HITI is effective at vector doses considered safe if directly translated to humans providing therapeutic efficacy in the adult liver in addition to newborn. Overall, our data support the development of this liver-directed AAV-based knockin strategy.

2.
Orthod Craniofac Res ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38800926

ABSTRACT

INTRODUCTION: The aim of this in vitro study was to examine the potential impact of different curing times of 3D-printed orthodontic aligners on their cytotoxicity. METHOD: Some 60 samples of aligner material were directly 3D printed using Tera Harz TC-85 DAC resin and randomly allocated to three different curing time groups (14, 24 and 50 min). Zendura FLX samples were used as control. The samples were incubated in saliva for 14 days, and then the supernatant was collected. Human gingival fibroblasts (HGF-1)-CRL2014 were used to evaluate potential cytotoxicity. Furthermore, HGF-1 cells were plated on the samples as well as on a glass control sample. After 72 h of growth, their viability was tested. RESULTS: Compared with the glass, only the 50-min curing time markedly reduced fibroblast cell growth. Additionally, a negative linear trend was observed between curing time and fibroblast growth. In comparison with the aligner control group, all samples, including the aligner control samples, exhibited a significant reduction in the viability of human fibroblasts when exposed to saliva. CONCLUSIONS: 3D directly printed aligners showed a cytotoxic effect similar to that of thermoformed conventional aligners in terms of fibroblasts growth. A linear trend was found between curing time and cells growth, indicating that directly printed aligners could exhibit higher cytotoxicity if exposed to a longer curing time. This dependence on curing time underscores the importance of following a strict manufacturing process.

SELECTION OF CITATIONS
SEARCH DETAIL
...