Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 83(8): 085113, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22938338

ABSTRACT

This article reports on the characterization of cryogenic sapphire oscillators (CSOs), and on the first test of a CSO in a real field installation, where ultimate frequency stability and continuous operation are critical issues, with no survey. Thanks to low-vibration liquid-He cryocooler design, Internet monitoring, and a significant effort of engineering, these oscillators could bridge the gap from an experiment to a fully reliable machine. The cryocooler needs scheduled maintenance every 2 years, which is usual for these devices. The direct comparison of two CSOs demonstrates a frequency stability of 5 × 10(-16) for 30 s ≤ τ ≤ 300 s integration time, and 4.5 × 10(-15) at 1 day (1 × 10(-14) typical). Two prototypes are fully operational, codenamed ELISA and ULISS. ELISA has been permanently installed the new deep space antenna station of the European Space Agency in Malargüe, Argentina, in May 2012. ULISS is a transportable version of ELISA, modified to fit in a small van (8.5 m(2) footprint). Installation requires a few hours manpower and 1 day of operation to attain full stability. ULISS, intended for off-site experiments and as a technology demonstrator, and has successfully completed two long-distance travels.

2.
Appl Opt ; 51(20): 4582-8, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22781232

ABSTRACT

Laser frequency fluctuations can be characterized either comprehensively by the frequency noise spectrum or in a simple but incomplete manner by the laser linewidth. A formal relation exists to calculate the linewidth from the frequency noise spectrum, but it is laborious to apply in practice. We recently proposed a much simpler geometrical approximation applicable to any arbitrary frequency noise spectrum. Here we present an experimental validation of this approximation using laser sources of different spectral characteristics. For each of them, we measured both the frequency noise spectrum to calculate the approximate linewidth and the actual linewidth directly. We observe a very good agreement between the approximate and directly measured linewidths over a broad range of values (from kilohertz to megahertz) and for significantly different laser line shapes.

3.
Article in English | MEDLINE | ID: mdl-24626029

ABSTRACT

The frequency instability of a shot-noise limited atomic fountain clock is inversely proportional to its signal-tonoise ratio. Therefore, increasing the atomic flux is a direct way to improve the stability. Nevertheless, in pulsed operation, the local oscillator noise limits the performance via the Dick effect. We experimentally demonstrate here that a continuous atomic fountain allows one to overcome this limitation. In this work, we take advantage of two-laser optical pumping on a cold cesium beam to increase the useful fountain flux and, thus, to reduce the frequency instability below the Dick limit. A stability of 6 × 10(-14)τ(-1/2) has been measured with the continuous cesium fountain FOCS-2.

4.
Opt Express ; 19(24): 24171-81, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22109444

ABSTRACT

We report the first full stabilization of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser (DPSSL) operating in the 1.5-µm spectral region. The stability of the comb is characterized in free-running and in phase-locked operation by measuring the noise properties of the carrier-envelope offset (CEO) beat, of the repetition rate, and of a comb line at 1558 nm. The high Q-factor of the semiconductor saturable absorber mirror (SESAM)-modelocked 1.5-µm DPSSL results in a low-noise CEO-beat, for which a tight phase lock can be much more easily realized than for a fiber comb. Using a moderate feedback bandwidth of only 5.5 kHz, we achieved a residual integrated phase noise of 0.72 rad rms for the locked CEO, which is one of the smallest values reported for a frequency comb system operating in this spectral region. The fractional frequency stability of the CEO-beat is 20­fold better than measured in a standard self-referenced commercial fiber comb system and contributes only 10(-15) to the optical carrier frequency instability at 1 s averaging time.


Subject(s)
Artifacts , Filtration/instrumentation , Lasers , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis
5.
Rev Sci Instrum ; 82(12): 123116, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22225208

ABSTRACT

We describe a radio-frequency (RF) discriminator, or frequency-to-voltage converter, based on a voltage-controlled oscillator phase-locked to the signal under test, which has been developed to analyze the frequency noise properties of an RF signal, e.g., a heterodyne optical beat signal between two lasers or between a laser and an optical frequency comb. We present a detailed characterization of the properties of this discriminator and we compare it to three other commercially available discriminators. Owing to its large linear frequency range of 7 MHz, its bandwidth of 200 kHz and its noise floor below 0.01 Hz(2)/Hz in a significant part of the spectrum, our frequency discriminator is able to fully characterize the frequency noise of a beat signal with a linewidth ranging from a couple of megahertz down to a few hertz. As an example of application, we present measurements of the frequency noise of the carrier envelope offset beat in a low-noise optical frequency comb.

6.
Appl Opt ; 49(25): 4801-7, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20820223

ABSTRACT

Frequency fluctuations of lasers cause a broadening of their line shapes. Although the relation between the frequency noise spectrum and the laser line shape has been studied extensively, no simple expression exists to evaluate the laser linewidth for frequency noise spectra that does not follow a power law. We present a simple approach to this relation with an approximate formula for evaluation of the laser linewidth that can be applied to arbitrary noise spectral densities.

SELECTION OF CITATIONS
SEARCH DETAIL
...