Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Energy Fuels ; 37(15): 10775-10798, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37554726

ABSTRACT

Hydrogen is often regarded as an ideal energy carrier. Its use in energy conversion devices does in fact not produce any pollutants. However, due to challenges related to its transportation and storage, liquid hydrogen carriers are being investigated. Among the liquid hydrogen carriers, ammonia is considered very promising because it is easy to store and transport, and its conversion to hydrogen has only nitrogen as a byproduct. This work focuses on a review of the latest results of studies dealing with ammonia decomposition for hydrogen production. After a general introduction to the topic, this review specifically focuses on works presenting results of membrane reactors for ammonia decomposition, particularly describing the different reactor configurations and operating conditions, membrane properties, catalysts, and purification steps that are required to achieve pure hydrogen for fuel cell applications.

2.
Membranes (Basel) ; 12(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36557118

ABSTRACT

In this work, the fluidized bed membrane reactor (FBMR) technology for the direct dehydrogenation of propane (PDH) was demonstrated at a laboratory scale. Double-skinned PdAg membranes were used to selectively remove H2 during dehydrogenation tests over PtSnK/Al2O3 catalyst under fluidization. The performance of the fluidized bed membrane reactor was experimentally investigated and compared with the conventional fluidized bed reactor (FBR) by varying the superficial gas velocity over the minimum fluidization velocity under fixed operating conditions (i.e., 500 °C, 2 bar and feed composition of 30vol% C3H8-70vol% N2). The results obtained in this work confirmed the potential for improving the PDH performance using the FBMR system. An increase in the initial propane conversion of c.a. 20% was observed, going from 19.5% in the FBR to almost 25% in the FBMR. The hydrogen recovery factor displayed a decrease from 70% to values below 50%, due to the membrane coking under alkene exposure. Despites this, the hydrogen extraction from the reaction environment shifted the thermodynamic equilibrium of the dehydrogenation reaction and achieved an average increase of 43% in propylene yields.

3.
Phys Chem Chem Phys ; 17(42): 28112-20, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-25765742

ABSTRACT

Au, Rh, Pd, Au-Rh and Au-Pd nanoparticles (NPs) were synthesized by colloidal chemical reduction and immobilized on hydrothermally-prepared rutile titania nanorods. The catalysts were characterized by aberration-corrected TEM/STEM, XPS, and FTIR, and were evaluated in the hydrogenation of tetralin in the presence of H2S. Oxidizing and reducing thermal treatments were employed to remove the polyvinyl alcohol (PVA) surfactant. Reduction in H2 at 350 °C was found efficient for removing the PVA while preserving the size (ca. 3 nm), shape and bimetallic nature of the NPs. While Au-Pd NPs are alloyed at the atomic scale, Au-Rh NPs contain randomly distributed single-phase domains. Calcination-reduction of Au-Rh NPs mostly leads to separated Au and Rh NPs, while pre-reduction generates a well-defined segregated structure with Rh located at the interface between Au and TiO2 and possibly present around the NPs as a thin overlayer. Both the titania support and gold increase the resistance of Rh and Pd to oxidation. Furthermore, although detrimental to tetralin hydrogenation initial activity, gold stabilizes the NPs against surface sulfidation in the presence of 50 ppm H2S, leading to increased catalytic performances of the Au-Rh and Au-Pd systems as compared to their Rh and Pd counterparts.

SELECTION OF CITATIONS
SEARCH DETAIL
...