Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 184: 106225, 2023 08.
Article in English | MEDLINE | ID: mdl-37442396

ABSTRACT

Increasing evidence indicates that a key factor in neurodegenerative diseases is the activation of the unfolded protein response (UPR) caused by an accumulation of misfolded proteins in the endoplasmic reticulum (ER stress). Particularly, in Huntington's disease (HD) mutant huntingtin (mHtt) toxicity involves disruption of the ER-associated degradation pathway and loss of the ER protein homeostasis leading to neuronal dysfunction and degeneration. Besides the role of the UPR in regulating cell survival and death, studies that demonstrate the contribution of sustained UPR activation, particularly of PERK signaling, in memory disturbances and synaptic plasticity deficiencies are emerging. Given the contribution of hippocampal dysfunction to emotional and cognitive deficits seen in HD, we have analyzed the involvement of ER stress in HD memory alterations. We have demonstrated that at early disease stages, ER stress activation manifested as an increase in GRP78 and CHOP is observed in the hippocampus of R6/1 mice. Genetic reduction of GRP78 expression resulted in preventing hippocampal-dependent memory alterations but no motor deficits. Accordingly, hippocampal neuropathology namely, dendritic spine loss and accumulation of mHtt aggregates was ameliorated by GRP78 reduction. To elucidate the signaling pathways, we found that the inactivation of PERK by GSK2606414 restored spatial and recognition memories in R6/1 mice and rescued dendritic spine density in CA1 pyramidal neurons and protein levels of some specific immediate early genes. Our study unveils the critical role of the GRP78/PERK axis in memory impairment in HD mice and suggests the modulation of PERK activation as a novel therapeutic target for HD intervention.


Subject(s)
Cognition Disorders , Endoplasmic Reticulum Chaperone BiP , Huntington Disease , Animals , Mice , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP/metabolism , Huntingtin Protein/genetics , Huntington Disease/metabolism , Memory Disorders/etiology , Mice, Transgenic
2.
Mol Cell Neurosci ; 119: 103705, 2022 03.
Article in English | MEDLINE | ID: mdl-35158060

ABSTRACT

Down syndrome (DS) or Trisomy 21 is the most common genetic cause of mental retardation with severe learning and memory deficits. DS is due to the complete or partial triplication of human chromosome 21 (HSA21) triggering gene overexpression and protein synthesis alterations responsible for a plethora of mental and physical phenotypes. Among the diverse brain target systems that affect hippocampal-dependent learning and memory deficit impairments in DS, the upregulation of the endocannabinoid system (ECS), and notably the overexpression of the cannabinoid type-1 receptor (CB1), seems to play a major role. Combining various protein and gene expression targeted approaches using western blot, qRT-PCR and FISH techniques, we investigated the expression pattern of ECS components in the hippocampus (HPC) of male Ts65Dn mice. Among all the molecules that constitute the ECS, we found that the expression of the CB1 is altered in the HPC of Ts65Dn mice. CB1 distribution is differentially segregated between the dorsal and ventral part of the HPC and within the different cell populations that compose the HPC. CB1 expression is upregulated in GABAergic neurons of Ts65Dn mice whereas it is downregulated in glutamatergic neurons. These results highlight a complex regulation of the CB1 encoding gene (Cnr1) in Ts65Dn mice that could open new therapeutic solutions for this syndrome.


Subject(s)
Cannabinoids , Down Syndrome , Animals , Disease Models, Animal , Down Syndrome/genetics , Down Syndrome/metabolism , Hippocampus/metabolism , Male , Mice , Mice, Transgenic , Neurons/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...