Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arq Neuropsiquiatr ; 81(10): 876-882, 2023 10.
Article in English | MEDLINE | ID: mdl-37852289

ABSTRACT

BACKGROUND: The saccadic eye movement is responsible for providing focus to a visual object of interest to the retina. In sports like volleyball, identifying relevant targets quickly is essential to a masterful performance. The training improves cortical regions underlying saccadic action, enabling more automated processing in athletes. OBJECTIVE: We investigated changes in the latency during the saccadic eye movement and the absolute theta power on the frontal and prefrontal cortices during the execution of the saccadic eye movement task in volleyball athletes and non-athletes. We hypothesized that the saccade latency and theta power would be lower due to training and perceptual-cognitive enhancement in volleyball players. METHODS: We recruited 30 healthy volunteers: 15 volleyball athletes (11 men and 4 women; mean age: 15.08 ± 1.06 years) and 15 non-athletes (5 men and 10 women; mean age: 18.00 ± 1.46 years). All tasks were performed simultaneously with electroencephalography signal recording. RESULTS: The latency of the saccadic eye movement presented a significant difference between the groups; a shorter time was observed among the athletes, associated with the players' superiority in terms of attention level. During the experiment, the athletes observed a decrease in absolute theta power compared to non-athletes on the electrodes of each frontal and prefrontal area. CONCLUSION: In the present study, we observed the behavior of reaction time and absolute theta power in athletes and non-athletes during a saccadic movement task. Our findings corroborate the premise of cognitive improvement, mainly due to the reduction of saccadic latency and lower beta power, validating the neural efficiency hypothesis.


ANTECEDENTES: O movimento ocular sacádico é responsável por dar foco a um objeto visual de interesse para a retina. Em esportes como o vôlei, identificar alvos relevantes o mais rápido possível é essencial para se ter um desempenho magistral. O treinamento melhora as regiões corticais subjacentes à ação sacádica, e permite um processamento mais automatizado em atletas. OBJETIVO: Investigamos as mudanças na latência durante o movimento ocular sacádico e a potência teta absoluta nos córtices frontal e pré-frontal durante a execução da tarefa de movimento ocular sacádico em atletas e não atletas de voleibol. Nossa hipótese é a de que a latência sacádica e a potência teta seriam menores em atletas devido ao treinamento e ao aprimoramento perceptivo-cognitivo em jogadores de voleibol. MéTODOS: Ao todo, 30 voluntários saudáveis foram recrutados para este estudo: 15 atletas de voleibol (11 homens e 4 mulheres; idade média: 15,08 ± 1,06 anos) e 15 não atletas (5 homens e 10 mulheres; idade média: 18,00 ± 1,46 anos). Todas as tarefas foram realizadas simultaneamente com o registro do sinal eletroencefalográfico. RESULTADOS: O resultado da latência do movimento ocular sacádico apresentou diferença significativa entre os grupos, sendo observado menor tempo entre os atletas, associado à superioridade dos jogadores em termos de nível de atenção. Durante o experimento, nos eletrodos de cada área frontal e pré-frontal, observou-se uma diminuição na potência teta absoluta nos atletas em comparação aos não atletas. CONCLUSãO: Neste estudo, observou-se o comportamento do tempo de reação e da potência teta absoluta em atletas e não atletas durante uma tarefa de movimento sacádico. Nossos achados corroboram a premissa de melhora cognitiva, principalmente pela redução da latência sacádica e menor potência beta, o que valida a hipótese de eficiência neural.


Subject(s)
Saccades , Volleyball , Male , Humans , Female , Adolescent , Young Adult , Adult , Electroencephalography , Reaction Time , Athletes
2.
Neurosci Lett ; 687: 77-81, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30253222

ABSTRACT

Repetitive Transcranial Magnetic Stimulation (rTMS) studies are used to test motor imagery hypothesis. Motor Imagery (MI) represents conscious access to contents of movement intention, generally executed unconsciously during motor preparation. The main objective of this study was to investigate electrophysiological changes, which occurred before and after low-frequency rTMS application when we compared three different tasks: execution, action observation and motor imagery of finger movement. We hypothesize that absolute theta power over frontal regions would change between sensorimotor integration tasks and after 1 Hz of rTMS application. Eleven healthy, right-handed volunteers of both sexes (5 males, 6 females; mean age 28 ± 5 years), with no history of psychiatric or neurological disorders, participated in the experiment. After performing the tasks randomly, subjects were submitted to 15 min of low-frequency rTMS applied on Superior Parietal Cortex (SPC) and performed the tasks again. All tasks were executed simultaneously with Eletroencephalography (EEG) signals recording. Our results clarified the specificity of each sub-region during MI activity. Frontopolar cortex presented involvement with motor process and showed main effect for task and moment. Inferior frontal gyrus presented involvement with long-term memory retrieval and showed interaction between task and moment in the left hemisphere while the right hemisphere showed a main effect for task and moment. The lack of the main effect for conditions on the anterior frontal cortex collaborates with the hypothesis that in this region an integrated circuit of performance monitoring exists.


Subject(s)
Cognition/physiology , Movement/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Theta Rhythm/physiology , Transcranial Direct Current Stimulation/methods , Adult , Electroencephalography/methods , Female , Humans , Male , Photic Stimulation/methods , Young Adult
3.
J Psychiatr Res ; 95: 238-246, 2017 12.
Article in English | MEDLINE | ID: mdl-28918162

ABSTRACT

Panic disorder (PD) is characterized by repeated and unexpected attacks of intense anxiety, which are not restricted to a determined situation or circumstance. The coherence function has been used to investigate the communication among brain structures through the quantitative EEG (qEEG). The objective of this study is to analyze if there is a difference in frontoparietal gamma coherence (GC) between panic disorder patients (PDP) and healthy controls (HC) during the Visual oddball paradigm; and verify if high levels of anxiety (produced by a computer simulation) affect PDP's working memory. Nine PDP (9 female with average age of 48.8, SD: 11.16) and ten HC (1 male and 9 female with average age of 38.2, SD: 13.69) were enrolled in this study. The subjects performed the visual oddball paradigm simultaneously to the EEG record before and after the presentation of computer simulation (CS). A two-way ANOVA was applied to analyze the factors Group and the Moment for each pair of electrodes separately, and another one to analyze the reaction time variable. We verified a F3-P3 GC increased after the CS movie, demonstrating the left hemisphere participation during the anxiety processing. The greater GC in HC observed in the frontal and parietal areas (P3-Pz, F4-F8 and Fp2-F4) points to the participation of these areas with the expected behavior. The greater GC in PDP for F7-F3 and F4-P4 pairs of electrodes assumes that it produces a prejudicial "noise" during information processing, and can be associated to interference on the communication between frontal and parietal areas. This "noise" during information processing is related to PD symptoms, which should be better known in order to develop effective treatment strategies.


Subject(s)
Cognitive Dysfunction/physiopathology , Electroencephalography/methods , Frontal Lobe/physiopathology , Gamma Rhythm/physiology , Memory, Short-Term/physiology , Panic Disorder/physiopathology , Parietal Bone/physiopathology , Adult , Cognitive Dysfunction/etiology , Computer Simulation , Female , Humans , Male , Middle Aged , Panic Disorder/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...