Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35336584

ABSTRACT

This work proposes a novel virtual reality system which makes use of wearable sensors for testing and validation of cooperative workplaces from the ergonomic point of view. The main objective is to show, in real time, the ergonomic evaluation based on a muscular activity analysis within the immersive virtual environment. The system comprises the following key elements: a robotic simulator for modeling the robot and the working environment; virtual reality devices for human immersion and interaction within the simulated environment; five surface electromyographic sensors; and one uniaxial accelerometer for measuring the human ergonomic status. The methodology comprises the following steps: firstly, the virtual environment is constructed with an associated immersive tutorial for the worker; secondly, an ergonomic toolbox is developed for muscular analysis. This analysis involves multiple ergonomic outputs: root mean square for each muscle, a global electromyographic score, and a synthetic index. They are all visualized in the immersive environment during the execution of the task. To test this methodology, experimental trials are conducted on a real use case in a human-robot cooperative workplace typical of the automotive industry. The results showed that the methodology can effectively be applied in the analysis of human-robot interaction, to endow the workers with self-awareness with respect to their physical conditions.


Subject(s)
Robotics , Virtual Reality , Wearable Electronic Devices , Ergonomics , Humans , Workplace
2.
Ergonomics ; 63(3): 324-333, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31648616

ABSTRACT

This paper presents an innovative safety training method based on digital ergonomics simulations and serious games, which are games that focus on education. Digital ergonomics is intended to disseminate the culture of safety among workers, while serious games are used to train the operators on specific safety procedures and verify their skills. The results of the experimentation in a real industrial environment showed that, compared to the traditional training methodology, multimedia contents and quantitative ergonomic analyses improve the level of attention and the awareness of the workers about their own safety. However, serious games turned out to be promising training tools with regard to standard operating procedures that are usually difficult or dangerous to simulate in a real working scenario without stopping production. Practitioner summary: Digital ergonomics and serious games are used to disseminate the culture of safety among the workers and for safety training. Our results show that the proposed methodology improves the level of attention and provides a better feedback about the actual skills of the workers than the standard educational strategies. Abbreviations.


Subject(s)
Computer-Assisted Instruction/methods , Ergonomics/methods , Occupational Health/education , Simulation Training/methods , Video Games , Workplace , Humans
3.
Soft Robot ; 6(6): 790-811, 2019 12.
Article in English | MEDLINE | ID: mdl-30481112

ABSTRACT

Mathematical modeling of soft robots is complicated by the description of the continuously deformable three-dimensional shape that they assume when subjected to external loads. In this article we present the deformation space formulation for soft robots dynamics, developed using a finite element approach. Starting from the Cosserat rod theory formulated on a Lie group, we derive a discrete model using a helicoidal shape function for the spatial discretization and a geometric scheme for the time integration of the robot shape configuration. The main motivation behind this work is the derivation of accurate and computational efficient models for soft robots. The model takes into account bending, torsion, shear, and axial deformations due to general external loading conditions. It is validated through analytic and experimental benchmark. The results demonstrate that the model matches experimental positions with errors <1% of the robot length. The computer implementation of the model results in SimSOFT, a dynamic simulation environment for design, analysis, and control of soft robots.

SELECTION OF CITATIONS
SEARCH DETAIL
...