Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Cells ; 13(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38607010

ABSTRACT

Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.


Subject(s)
Extracellular Vesicles , Glioblastoma , Receptors, Purinergic P2X7 , Secretome , Humans , Cell Line, Tumor , Extracellular Vesicles/metabolism , Glioblastoma/metabolism , Neoplastic Stem Cells/pathology , Proteome/metabolism , Proteomics , Receptors, Purinergic P2X7/metabolism
2.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499421

ABSTRACT

Aging is a complex process often accompanied by cognitive decline that represents a risk factor for many neurodegenerative disorders including Alzheimer's and Parkinson's disease. The molecular mechanisms involved in age-related cognitive decline are not yet fully understood, although increased neuroinflammation is considered to play a significant role. In this study, we characterized a proteomic view of the hippocampus of the senescence-accelerated mouse prone-8 (SAMP8), a model of enhanced senescence, in comparison with the senescence-accelerated-resistant mouse (SAMR1), a model of normal aging. We additionally investigated inflammatory cytokines and cholinergic components gene expression during aging in the mouse brain tissues. Proteomic data defined the expression of key proteins involved in metabolic and cellular processes in neuronal and glial cells of the hippocampus. Gene Ontology revealed that most of the differentially expressed proteins are involved in the cytoskeleton and cell motility regulation. Molecular analysis results showed that both inflammatory cytokines and cholinergic components are differentially expressed during aging, with a downward trend of cholinergic receptors and esterase enzymes expression, in contrast to an upward trend of inflammatory cytokines in the hippocampus of SAMP8. Together, our results support the important role of the cholinergic and cytokine systems in the aging of the murine brain.


Subject(s)
Hippocampus , Proteomics , Animals , Mice , Hippocampus/metabolism , Aging/genetics , Aging/metabolism , RNA, Messenger/metabolism , Cholinergic Agents/metabolism
3.
Biomedicines ; 10(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35453511

ABSTRACT

Severe eosinophilic asthma is characterized by chronic airway inflammation, oxidative stress, and elevated proinflammatory cytokines, especially IL-5. Mepolizumab and benralizumab are both humanized IgG antibodies directed against IL-5 signaling, directly acting on eosinophils count. Together with the complexity of severe asthma classification and patient selection for the targeted treatment, there is also the urgency to clarify the follow-up of therapy to identify biomarkers, in addition to eosinophils, for the optimal duration of treatment, persistence of effectiveness, and safety. To this purpose, here we performed a follow-up study using differential proteomic analysis on serum samples after 1 and 6 months of both therapies and sera from healthy patients. Statistical analysis by PCA and heatmap analyses were performed, and identified proteins were used for enrichment analysis by MetaCore software. The analysis highlighted 82 differences among all considered conditions. In particular, 30 referred to benralizumab time point (T0, T1B, T6B) and 24 to mepolizumab time point (T0, T1M, T6M) analyses. t-SNE and heatmap analyses evidence that the differential serum protein profile at 6 months of both treatments is more similar to that of the healthy subjects. Among the identified proteins, APOAI, APOC-II, and APOC-III are upregulated principally after 6 months of benralizumab treatment, plasminogen is upregulated after 6 months of both treatments and ceruloplasmin, upregulated already after 1 month of benralizumab, becoming higher after 6 months of mepolizumab. Using enrichment analysis, identified proteins were related to lipid metabolism and transport, blood coagulation, and ECM remodeling.

4.
J Clin Med ; 11(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35330001

ABSTRACT

The monotherapy with levo-thyroxine (LT4) is the treatment of choice for patients with hypothyroidism after thyroidectomy. However, many athyreotic LT4-treated patients with thyroid hormones in the physiological range experience hypothyroid-like symptoms, showing post-operative, statistically significant lower FT3 levels with respect to that before total thyroidectomy. Since we hypothesized that the lower plasmatic FT3 levels observed in this subgroup could be associated with tissue hypothyroidism, here we compared, by a preliminary proteomic analysis, eight sera of patients with reduced post-surgical FT3 to eight sera from patients with FT3 levels similar to pre-surgery levels, and six healthy controls. Proteomic analysis highlights a different serum protein profile among the considered conditions. By enrichment analysis, differential proteins are involved in coagulation processes (PLMN-1.61, -1.98 in reduced vs. stable FT3, p < 0.02; A1AT fragmentation), complement system activation (CFAH + 1.83, CFAB + 1.5, C1Qb + 1.6, C1S + 7.79 in reduced vs. stable FT3, p < 0.01) and in lipoprotein particles remodeling (APOAI fragmentation; APOAIV + 2.13, p < 0.003), potentially leading to a pro-inflammatory response. This study suggests that LT4 replacement therapy might restore biochemical euthyroid conditions in thyroidectomized patients, but in some cases without re-establishing body tissue euthyroidism. Since our results, this condition is reflected by the serum protein profile.

5.
Int J Mol Sci ; 22(15)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34360699

ABSTRACT

Reactive astrocytes are a hallmark of neurodegenerative disease including multiple sclerosis. It is widely accepted that astrocytes may adopt alternative phenotypes depending on a combination of environmental cues and intrinsic features in a highly plastic and heterogeneous manner. However, we still lack a full understanding of signals and associated signaling pathways driving astrocyte reaction and of the mechanisms by which they drive disease. We have previously shown in the experimental autoimmune encephalomyelitis mouse model that deficiency of the molecular adaptor Rai reduces disease severity and demyelination. Moreover, using primary mouse astrocytes, we showed that Rai contributes to the generation of a pro-inflammatory central nervous system (CNS) microenvironment through the production of nitric oxide and IL-6 and by impairing CD39 activity in response to soluble factors released by encephalitogenic T cells. Here, we investigated the impact of Rai expression on astrocyte function both under basal conditions and in response to IL-17 treatment using a proteomic approach. We found that astrocytes and astrocyte-derived extracellular vesicles contain a set of proteins, to which Rai contributes, that are involved in the regulation of oligodendrocyte differentiation and myelination, nitrogen metabolism, and oxidative stress. The HIF-1α pathway and cellular energetic metabolism were the most statistically relevant molecular pathways and were related to ENOA and HSP70 dysregulation.


Subject(s)
Astrocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Extracellular Vesicles/metabolism , Interleukin-17/pharmacology , Neuroprotection , Oligodendroglia/physiology , Src Homology 2 Domain-Containing, Transforming Protein 3/genetics , Animals , Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin Sheath , Proteomics , Src Homology 2 Domain-Containing, Transforming Protein 3/metabolism
7.
Int J Mol Sci ; 22(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919289

ABSTRACT

Spinal muscular atrophy (SMA) type 1 is a severe infantile autosomal-recessive neuromuscular disorder caused by a survival motor neuron 1 gene (SMN1) mutation and characterized by progressive muscle weakness. Without supportive care, SMA type 1 is rapidly fatal. The antisense oligonucleotide nusinersen has recently improved the natural course of this disease. Here, we investigated, with a functional proteomic approach, cerebrospinal fluid (CSF) protein profiles from SMA type 1 patients who underwent nusinersen administration to clarify the biochemical response to the treatment and to monitor disease progression based on therapy. Six months after starting treatment (12 mg/5 mL × four doses of loading regimen administered at days 0, 14, 28, and 63), we observed a generalized reversion trend of the CSF protein pattern from our patient cohort to that of control donors. Notably, a marked up-regulation of apolipoprotein A1 and apolipoprotein E and a consistent variation in transthyretin proteoform occurrence were detected. Since these multifunctional proteins are critically active in biomolecular processes aberrant in SMA, i.e., synaptogenesis and neurite growth, neuronal survival and plasticity, inflammation, and oxidative stress control, their nusinersen induced modulation may support SMN improved-expression effects. Hence, these lipoproteins and transthyretin could represent valuable biomarkers to assess patient responsiveness and disease progression.


Subject(s)
Genetic Therapy , Oligonucleotides/pharmacology , Proteome/analysis , Spinal Muscular Atrophies of Childhood/therapy , Child, Preschool , Female , Humans , Infant , Male , Oligonucleotides/therapeutic use , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Spinal Muscular Atrophies of Childhood/cerebrospinal fluid , Spinal Muscular Atrophies of Childhood/drug therapy , Spinal Muscular Atrophies of Childhood/genetics
8.
Biomedicines ; 9(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546239

ABSTRACT

Extracellular vesicles (EVs) released from tumor cells are actively investigated, since molecules therein contained and likely transferred to neighboring cells, supplying them with oncogenic information/functions, may represent cancer biomarkers and/or druggable targets. Here, we characterized by a proteomic point of view two EV subtypes isolated by sequential centrifugal ultrafiltration technique from culture medium of glioblastoma (GBM)-derived stem-like cells (GSCs) obtained from surgical specimens of human GBM, the most aggressive and lethal primary brain tumor. Electron microscopy and western blot analysis distinguished them into microvesicles (MVs) and exosomes (Exos). Two-dimensional electrophoresis followed by MALDI TOF analysis allowed us to identify, besides a common pool, sets of proteins specific for each EV subtypes with peculiar differences in their molecular/biological functions. Such a diversity was confirmed by identification of some top proteins selected in MVs and Exos. They were mainly chaperone or metabolic enzymes in MVs, whereas, in Exos, molecules are involved in cell-matrix adhesion, cell migration/aggressiveness, and chemotherapy resistance. These proteins, identified by EVs from primary GSCs and not GBM cell lines, could be regarded as new possible prognostic markers/druggable targets of the human tumor, although data need to be confirmed in EVs isolated from a greater GSC number.

9.
Toxics ; 10(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35051051

ABSTRACT

A topsoil sample obtained from a highly industrialized area (Taranto, Italy) was tested on the DR-CALUX® cell line and the exposed cells processed with proteomic and bioinformatics analyses. The presence of polyhalogenated compounds in the topsoil extracts was confirmed by GC-MS/MS analysis. Proteomic analysis of the cells exposed to the topsoil extracts identified 43 differential proteins. Enrichment analysis highlighted biological processes, such as the cellular response to a chemical stimulus, stress, and inorganic substances; regulation of translation; regulation of apoptotic process; and the response to organonitrogen compounds in light of particular drugs and compounds, extrapolated by bioinformatics all linked to the identified protein modifications. Our results confirm and reflect the complex epidemiological situation occurring among Taranto inhabitants and underline the need to further investigate the presence and sources of inferred chemicals in soils. The combination of bioassays and proteomics reveals a more complex scenario of chemicals able to affect cellular pathways and leading to toxicities rather than those identified by only bioassays and related chemical analysis. This combined approach turns out to be a promising tool for soil risk assessment and deserves further investigation and developments for soil monitoring and risk assessment.

10.
Biochim Biophys Acta Proteins Proteom ; 1869(2): 140563, 2021 02.
Article in English | MEDLINE | ID: mdl-33176218

ABSTRACT

INTRODUCTION: Severe eosinophilic asthma has been associated with Th2 airway inflammation and elevated proinflammatory cytokines and chemokines, such as IL-5. Precision therapies have recently been shown to improve asthma symptoms with a steroid-sparing effect. Two such therapies, Benralizumab and Mepolizumab, humanized IgG antibodies directed against the IL-5 receptor and IL-5, have been approved for severe eosinophilic asthma. METHODS: Here we used a differential proteomic approach to analyse serum from patients with severe eosinophilic asthma treated with Benralizumab and Mepolizumab in a search for differential molecular modifications responsible of their effects. Enrichment analysis of differential proteins was performed for the two treatments. RESULTS AND DISCUSSION: After one month of Benralizumab treatment we detected up-regulation of certain protein species of the antioxidant ceruloplasmin. To investigate oxidative stress, we performed redox proteomics which detected lower oxidative burst after one month of Benralizumab treatment than in the pre-treatment phase or after one month of Mepolizumab therapy.


Subject(s)
Asthma/drug therapy , Ceruloplasmin/metabolism , Interleukin-5/blood , Oxidative Stress/drug effects , Receptors, Interleukin-5/blood , Adult , Antibodies, Monoclonal, Humanized/administration & dosage , Asthma/blood , Asthma/genetics , Asthma/pathology , Eosinophils/metabolism , Eosinophils/pathology , Female , Gene Expression Regulation/drug effects , Humans , Inflammation/blood , Inflammation/drug therapy , Inflammation/genetics , Inflammation/pathology , Male , Middle Aged , Oxidation-Reduction , Proteomics/methods
11.
J Mol Cell Cardiol ; 131: 171-186, 2019 06.
Article in English | MEDLINE | ID: mdl-31055035

ABSTRACT

RATIONALE: Understanding mechanisms of the therapeutic effects of stem/progenitor cells, among which adipose tissue-derived mesenchymal stromal cells (AT-MSCs), has important implications for clinical use. Since the majority of such cells die within days or weeks after transplantation and do not persist in the transplanted organ or tissue, their effects appear to be largely mediated by paracrine signaling pathways, and are enhanced by overexpression of the antisenescent protein telomerase reverse transcriptase (TERT), and the anti-apoptotic transcription factor myocardin (MYOCD). AIM: By a proteomic approach combining two-dimensional gel electrophoresis (2DE) with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF/TOF) mass spectrometry, we aimed at analyzing how soluble and vesicular secretomes of aged murine AT-MSCs and their angiogenic function are modulated by the overexpression of TERT and MYOCD. METHODS: We cultured murine mock-transduced AT-MSCs and "rejuvenated" AT-MSCs overexpressing TERT and MYOCD (rTMAT-MSCs) harvested from 1-year-old male C57BL/6 mice. We established proteomes from 3 mock-transduced AT-MSCs and rTMAT-MSCs cultures in serum-free conditions, as well as their corresponding conditioned medium (CM) and exosome-enriched fractions (Exo+). RESULTS AND CONCLUSIONS: Proteomic analysis revealed a 2-fold increase of matrix metalloproteinase-2 (MMP-2) and its inhibitor metalloproteinase inhibitor 2 (TIMP2) in the CM - but not in the Exo + - of rTMAT-MSCs as compared to mock-transduced AT-MSCs. At the functional level, rTMAT-MSCs-CM, and - to a lesser extent - its Exo + fraction, increased tube formation of human vein endothelial cells (HUVECs), which could be blocked by anti-MMP2 and enhanced by anti-TIMP2 antibodies, respectively. Altogether, our results identify MMP2 and its inhibitor TIMP2 as novel candidates by which rTMAT-MSCs can support angiogenesis. Our strategy also illustrates the usefulness of comparative targeted proteomic approach to decipher molecular pathways underlying rTMAT-MSCs properties.


Subject(s)
Mesenchymal Stem Cells/metabolism , Nuclear Proteins/metabolism , Proteomics/methods , Telomerase/metabolism , Trans-Activators/metabolism , Adipose Tissue/cytology , Animals , Exosomes/genetics , Male , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Inbred C57BL , Tissue Inhibitor of Metalloproteinase-2/metabolism
12.
Future Microbiol ; 11: 1315-1338, 2016 10.
Article in English | MEDLINE | ID: mdl-27633726

ABSTRACT

AIM: To evaluate the antibacterial and antibiofilm mechanisms of usnic acid (USN) against methicillin-resistant Staphylococcus aureus from cystic fibrosis patients. MATERIALS & METHODS: The effects exerted by USN at subinhibitory concentrations on S. aureus Sa3 strain was evaluated by proteomic, real-time PCR and electron microscopy analyses. RESULTS & CONCLUSION: Proteomic analysis showed that USN caused damage in peptidoglycan synthesis, as confirmed by microscopy. Real-time PCR analysis showed that antibiofilm activity of USN is mainly due to impaired adhesion to the host matrix binding proteins, and decreasing lipase and thermonuclease expression. Our data show that USN exerts anti-staphylococcal effects through multitarget inhibitory effects, thus confirming the rationale for considering it 'lead compound' for the treatment of cystic fibrosis infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzofurans/pharmacology , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Adhesins, Bacterial/drug effects , Anti-Bacterial Agents/administration & dosage , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzofurans/administration & dosage , Carrier Proteins/drug effects , Cell Membrane/drug effects , Cell Survival/drug effects , Colony Count, Microbial , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , DNA, Bacterial , Down-Regulation , Lipase/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/ultrastructure , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Peptidoglycan/biosynthesis , Peptidoglycan/drug effects , Propidium/metabolism , Protein Interaction Maps , Proteomics/methods , Real-Time Polymerase Chain Reaction/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Staphylococcal Infections/microbiology , Time Factors , Virulence/drug effects , Virulence/genetics
13.
Stem Cells Dev ; 24(12): 1415-28, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25608581

ABSTRACT

Mesenchymal Stem Cells derived from Amniotic Fluid (AFMSCs) are multipotent cells of great interest for regenerative medicine. Two predominant cell types, that is, Epithelial-like (E-like) and Fibroblast-like (F-like), have been previously detected in the amniotic fluid (AF). In this study, we examined the AF from 12 donors and observed the prevalence of the E-like phenotype in 5, whereas the F-like morphology was predominant in 7 samples. These phenotypes showed slight differences in membrane markers, with higher CD90 and lower Sox2 and SSEA-4 expression in F-like than in E-like cells; whereas CD326 was expressed only in the E-like phenotype. They did not show any significant differences in osteogenic, adipogenic or chondrogenic differentiation. Proteomic analysis revealed that samples with a predominant E-like phenotype (HC1) showed a different profile than those with a predominant F-like phenotype (HC2). Twenty-five and eighteen protein spots were differentially expressed in HC1 and HC2 classes, respectively. Of these, 17 from HC1 and 4 from HC2 were identified by mass spectrometry. Protein-interaction networks for both phenotypes showed strong interactions between specific AFMSC proteins and molecular chaperones, such as preproteasomes and mature proteasomes, both of which are important for cell cycle regulation and apoptosis. Collectively, our results provide evidence that, regardless of differences in protein profiling, the prevalence of E-like or F-like cells in AF does not affect the differentiation capacity of AFMSC preparations. This may be valuable information with a view to the therapeutic use of AFMSCs.


Subject(s)
Amniotic Fluid/cytology , Cell Differentiation/genetics , Epithelial Cells/cytology , Fibroblasts/cytology , Mesenchymal Stem Cells/cytology , Amniocentesis , Amniotic Fluid/metabolism , Cell Lineage , Epithelial Cells/metabolism , Female , Fibroblasts/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Pregnancy , Protein Biosynthesis/genetics , Protein Interaction Maps/genetics , Proteomics , Regenerative Medicine
14.
PLoS One ; 9(7): e103030, 2014.
Article in English | MEDLINE | ID: mdl-25050814

ABSTRACT

Gliomas are the most frequent brain tumors. Among them, glioblastomas are malignant and largely resistant to available treatments. Histopathology is the gold standard for classification and grading of brain tumors. However, brain tumor heterogeneity is remarkable and histopathology procedures for glioma classification remain unsatisfactory for predicting disease course as well as response to treatment. Proteins that tightly associate with cancer differentiation and progression, can bear important prognostic information. Here, we describe the identification of protein clusters differentially expressed in high-grade versus low-grade gliomas. Tissue samples from 25 high-grade tumors, 10 low-grade tumors and 5 normal brain cortices were analyzed by 2D-PAGE and proteomic profiling by mass spectrometry. This led to identify 48 differentially expressed protein markers between tumors and normal samples. Protein clustering by multivariate analyses (PCA and PLS-DA) provided discrimination between pathological samples to an unprecedented extent, and revealed a unique network of deranged proteins. We discovered a novel glioblastoma control module centered on four major network hubs: Huntingtin, HNF4α, c-Myc and 14-3-3ζ. Immunohistochemistry, western blotting and unbiased proteome-wide meta-analysis revealed altered expression of this glioblastoma control module in human glioma samples as compared with normal controls. Moreover, the four-hub network was found to cross-talk with both p53 and EGFR pathways. In summary, the findings of this study indicate the existence of a unifying signaling module controlling glioblastoma pathogenesis and malignant progression, and suggest novel targets for development of diagnostic and therapeutic procedures.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Glioma/pathology , Proteome/analysis , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Brain/metabolism , Brain Neoplasms/metabolism , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Glioma/metabolism , Humans , Immunohistochemistry , Mass Spectrometry , Multivariate Analysis , Protein Interaction Maps , Proteome/metabolism , Proteomics/methods , Signal Transduction
15.
PLoS One ; 8(8): e71101, 2013.
Article in English | MEDLINE | ID: mdl-23940696

ABSTRACT

BACKGROUND: Many adult tissues contain a population of stem cells with the ability to regenerate structures similar to the microenvironments from which they are derived in vivo and represent a promising therapy for the regeneration of complex tissues in the clinical disorder. Human adult stem cells (SCs) including bone marrow stem cells (BMSCs), dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) have been characterized for their high proliferative potential, expression of characteristic SC-associated markers and for the plasticity to differentiate in different lineage in vitro. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study is to define the molecular features of stem cells from oral tissue by comparing the proteomic profiles obtained with 2-DE followed by MALDI-TOF/TOF of ex-vivo cultured human PDLSCs, DPSCs and BMSCs. Our results showed qualitative similarities in the proteome profiles among the SCs examined including some significant quantitative differences. To enrich the knowledge of oral SCs proteome we performed an analysis in narrow range pH 4-7 and 6-9, and we found that DPSCs vs PDLSCs express differentially regulated proteins that are potentially related to growth, regulation and genesis of neuronal cells, suggesting that SCs derived from oral tissue source populations may possess the potential ability of neuronal differentiation which is very consistent with their neural crest origin. CONCLUSION/SIGNIFICANCE: This study identifies some differentially expressed proteins by using comparative analysis between DPSCs and PDLSCs and BMSCs and suggests that stem cells from oral tissue could have a different cell lineage potency compared to BMSCs.


Subject(s)
Adult Stem Cells/chemistry , Dental Pulp/cytology , Periodontal Ligament/cytology , Proteome/analysis , Adult , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Dental Pulp/metabolism , Flow Cytometry , Humans , Hydrogen-Ion Concentration , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis/physiology , Periodontal Ligament/metabolism , Young Adult
16.
J Cell Biochem ; 112(12): 3797-806, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21826706

ABSTRACT

Extremely low-frequency magnetic fields (ELF-MFs) may affect human health because of the possible associations with leukemia but also with cancer, cardiovascular, and neurological disorders. In the present work, human SH-SY5Y neuroblastoma cells were exposed to a 50 Hz, 1 mT sinusoidal ELF-MF at three different times, that is, 5 days (T5), 10 days (T10), and 15 days (T15) and then the effects of ELF-MF on proteome expression and biological behavior were investigated. Through comparative analysis between treated and control samples, we analyzed the proteome changes induced by ELF-MF exposure. Nine new proteins resolved in sample after a 15-day treatment were involved in a cellular defense mechanism and/or in cellular organization and proliferation such as peroxiredoxin isoenzymes (2, 3, and 6), 3-mercaptopyruvate sulfurtransferase, actin cytoplasmatic 2, t-complex protein subunit beta, ropporin-1A, and profilin-2 and spindlin-1. Our results indicated that ELF-MFs exposure altered the proliferative status and other important cell biology-related parameters, such as cell growth pattern, and cytoskeletal organization. These findings support our hypothesis that ELF radiation could trigger a shift toward a more invasive phenotype.


Subject(s)
Magnetics , Neuroblastoma/pathology , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans , Immunohistochemistry , Proteome
17.
Proteome Sci ; 8: 18, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20346146

ABSTRACT

BACKGROUND: The human umbilical cord contains mucoid connective tissue and fibroblast-like cells. These cells named Wharton's jelly cells, (WJCs) display properties similar to mesenchymal stem cells therefore representing a rich source of primitive cells to be potentially used in regenerative medicine. RESULTS: To better understand their self-renewal and potential in vitro expansion capacity, a reference 2D map was constructed as a proteomic data set. 158 unique proteins were identified. More than 30% of these proteins belong to cytoskeleton compartment. We also found that several proteins including Shootin1, Adenylate kinase 5 isoenzyme and Plasminogen activator-inhibitor 2 are no longer expressed after the 2nd passage of in vitro replication. This indicates that the proliferative potency of these cells is reduced after the initial stage of in vitro growing. At the end of cellular culturing, new synthesized proteins, including, ERO1-like protein alpha, Aspartyl-tRNA synthetase and Prolyl-4-hydroxylase were identified. It is suggested that these new synthesized proteins are involved in the impairment of cellular surviving during replication and differentiation time. CONCLUSIONS: Our work represents an essential step towards gaining knowledge of the molecular properties of WJCs so as to better understand their possible use in the field of cell therapy and regenerative medicine.

18.
Biochim Biophys Acta ; 1784(4): 611-20, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18302948

ABSTRACT

In order to discover molecular biomarkers in radiation response we investigated the effects of X-radiation on radioresistant K562 cells by using a comparative proteomic analysis. In treated cells 29 up-regulated and 10 down-regulated proteins were detected by image analysis and identified by mass spectrometry. Elongation factor 1 alpha 1 and stress-70 protein showed a 6.2 and 5.4 fold increase respectively in treated cells. Additional proteins such us pi and omega classes glutathione transferases, ATP synthase D chain, were also found to be up-regulated, suggesting that the enzyme belonging to the cellular detoxification system against oxidative stress and energetic metabolism may have a key role in the cellular response to radiation injury. This data set may provide a useful tool to design a combined chemo- and radiotherapic strategy against leukemia disease.


Subject(s)
Proteome/analysis , Proteomics/methods , X-Rays , Apoptosis/radiation effects , Blotting, Western , Cell Cycle/radiation effects , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Cell Nucleus/ultrastructure , Cell Survival/radiation effects , Electrophoresis, Gel, Two-Dimensional , Glutathione Transferase/metabolism , Humans , K562 Cells , Leukemia, Erythroblastic, Acute/metabolism , Leukemia, Erythroblastic, Acute/pathology , Microscopy, Electron, Transmission , Peptide Elongation Factor 1/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
J Cell Biochem ; 103(4): 1294-308, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-17786980

ABSTRACT

CD38 is a type II transmembrane glycoprotein found mainly on the plasma membrane involved in the metabolism of cADPR and NAADP, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. Recent data report the presence of CD38 in different cellular compartments raising new questions about its effective role in cellular metabolism. In rat hepatocyte nuclei, CD38 has been proposed as a responsive to cADPR integral inner membrane protein suggesting that the nuclear envelope may also be an important source of Ca2+ stores. Further reports indicating that CD38 is localized in nuclear compartments in a variety of cell types and tissues including brain, liver, eye, spleen, and bone raise the condition of resolving the question concerning the effective presence of CD38 within the nucleus. Here we report data supporting the presence of CD38 at nuclear level independently of expression of surface CD38. We utilized two different human leukemia cell lines expressing or not expressing CD38 molecule on their cell surface. The morphological and biochemical results including enzymatic activity and proteomic determinations explain the effective nuclear localization of CD38 in human Raji and K562 cells. Since cell nucleus is a complex and highly dynamic environment with many functionally specialized regions, the nuclear localization of specific proteins represents an important mechanism in signal transduction. The presence of CD38 at the interchromatin region whether linked to nuclear scaffold or stored in nuclear structures as micronuclei and Cajal bodies co-localizing with coilin, suggests its involvement in nuclear processes including transcription, replication, repairing and splicing.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Cell Nucleus/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cell Nucleus/ultrastructure , Chromatin/metabolism , Chromatin/ultrastructure , Coiled Bodies/metabolism , Coiled Bodies/ultrastructure , Humans , Microscopy, Immunoelectron , Nuclear Proteins/metabolism
20.
Biochim Biophys Acta ; 1764(11): 1775-85, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17067859

ABSTRACT

We used proteomic approach to analyze the protein profile of human follicular fluid (HFF) obtained from 25 normo-ovulatory women undergoing assisted reproduction techniques due to a male infertility factor. In all HFF samples analyzed we found 695 common spots distributed in the 3 to 10 pH range and in the 10-200 kDa range. Only 625 of these spots were also present in the plasma. We used MALDI-TOF-MS analysis to unequivocally assign 183 HFF/plasma matched spots and 27 HFF/plasma unmatched spots. A large number of acute-phase proteins, including transferrin, ceruloplasmin, afamin, hemopexin, haptoglobin and plasma amyloid protein, were identified in HFF in relatively high concentration supporting the hypothesis that mammalian ovulation can be compared to an inflammatory event. We also identified several important antioxidant enzymes; i.e., catalase, superoxide dismutase, glutathione transferase, paraoxonase, heat shock protein 27 and protein disulfide isomerase. This indicates that during maturation the human follicle is well protected against toxic injury due to oxidative stress.


Subject(s)
Follicular Fluid/chemistry , Proteome , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...