Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 103(4): 1436-46, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25046830

ABSTRACT

Gold nanoparticles are increasingly being employed in innovative biological applications thanks to their advantages of material- and size-dependent physics and chemical interactions with the cellular systems. On the other hand, growing concern has emerged on the toxicity which would render gold-based nanoparticles harmful to cell cultures, animals, and humans. Emerging attention is focused on the interaction of gold nanoparticles with nervous system, especially regarding the ability to overcome the blood-brain barrier (BBB) which represents the major impediment to the delivery of therapeutics into the brain. We synthesized highly stable 2-mercapto-1-methylimidazole-stabilized gold-nanoparticles (AuNPs)-mmi to investigate their entry, accumulation, and toxicity in vitro (SH-SY5Y human neuroblastoma cells) and in vivo (brain of C57BL/6 mice) through optical and electron microscopy. After incubation in the cell culture medium at the lowest dose of 0.1 mg/mL the (AuNPs)-mmi nanoparticles were found compacted and recruited into endosome/lysosomes (1 h) before their fusion (2 h) and the onset of neuronal death by apoptosis (4 h) as proved by terminal-transferase-mediated dUTP nick end labeling assay and caspase-3 immunoreactivity. The ability of (AuNPs)-mmi to cross the BBB was assessed by injection in the caudal vein of C57BL/6 mice. Among different brain regions, the nanoparticles were found in the CaudatoPutamen area, mainly in the striatal neurons 4 h after injection. These neurons showed the typical hallmarks of apoptosis. Our findings provide, for the first time, the dynamic of 2-mercapto-1-methylimidazole nanogold uptake. The molecular mechanism which underlies the nanogold-driven apoptotic event is analyzed and discussed in order to take into account when designing nanomaterials to interface with biological structures.


Subject(s)
Apoptosis/drug effects , Gold/pharmacology , Imidazoles/pharmacology , Metal Nanoparticles/chemistry , Neurons/cytology , Animals , Brain/drug effects , Brain/metabolism , Cell Shape/drug effects , Endocytosis/drug effects , Humans , In Situ Nick-End Labeling , Injections, Intravenous , Metal Nanoparticles/ultrastructure , Mice, Inbred C57BL , Time Factors , Tissue Distribution/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...