Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters










Publication year range
1.
Pathogens ; 13(3)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38535569

ABSTRACT

An interesting article recently published in Science Translational Medicine reports a variable risk of persistent COVID-19 among patients affected by different immunodeficiency conditions [...].

3.
Vet Rec ; 194(3): 119, 2024 02 03.
Article in English | MEDLINE | ID: mdl-38305513
4.
Pathogens ; 12(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003811

ABSTRACT

Similarly to many other countries across the globe, several floods have been recorded in Italy throughout the last few decades, including those of catastrophic magnitude that occurred in the Emilia-Romagna and Tuscany regions last May and a few weeks ago, respectively [...].

5.
Vet Rec ; 193(8): 331-332, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37861164
6.
Pathogens ; 12(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37764984

ABSTRACT

Climate change, with a special emphasis on global warming, is believed to be a key driver of the accelerated rate of alien species expansion into the Mediterranean Sea basin and, more generally, into all marine and oceanic ecosystems [...].

7.
Virus Res ; 336: 199231, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37769814

ABSTRACT

Cetacean morbillivirus (CeMV) is an enveloped, non-segmented, negative-stranded RNA virus that infects marine mammals, spreading across species and causing lethal disease outbreaks worldwide. Among the eight proteins encoded by the CeMV genome, the haemagglutinin (H) glycoprotein is responsible for the virus attachment to host cell receptors. CeMV H represents an attractive target for antiviral and diagnostic research, yet the elucidation of the molecular mechanisms underlying its role in infection and inter-species transmission was hampered thus far due to the unavailability of recombinant versions of the protein. Here we present the cloning, expression and purification of a recombinant CeMV H ectodomain (rH-ecto), providing an initial characterization of its biophysical and structural properties. Sodium dodecyl sulphate - polyacrylamide gel electrophoresis (PAGE) combined to Western blot analysis and periodic acid Schiff assay showed that CeMV rH-ecto is purifiable at homogeneity from insect cells as a secreted, soluble and glycosylated protein. Miniaturized differential scanning fluorimetry, Blue Native PAGE and size exclusion chromatography coupled to multiangle light scattering revealed that CeMV rH-ecto is globularly folded, thermally stable and exists in solution in the oligomeric states of dimer and multiple of dimers. Furthermore, negative stain electron microscopy single particle analysis allowed us to delineate a low-resolution molecular architecture of the CeMV rH-ecto dimer, which recapitulates native assemblies from other morbilliviral H proteins, such as those from measles virus and canine distemper virus. This set of experiments by orthogonal techniques validates the CeMV rH-ecto as an experimental model for future biochemical studies on its structure and functions.

8.
Pathogens ; 12(8)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37623994

ABSTRACT

Brucella ceti infections have been increasingly reported in cetaceans. In this study, we analyzed all cases of B. ceti infection detected in striped dolphins stranded along the Italian coastline between 2012 and 2021 (N = 24). We focused on the pathogenic role of B. ceti through detailed pathological studies, and ad hoc microbiological, biomolecular, and serological investigations, coupled with a comparative genomic analysis of the strains. Neurobrucellosis was observed in 20 animals. The primary histopathologic features included non-suppurative meningoencephalitis (N = 9), meningitis (N = 6), and meningoencephalomyelitis (N = 5), which was also associated with typical lesions in other tissues (N = 8). Co-infections were detected in more than half of the cases, mostly involving Cetacean Morbillivirus (CeMV). The 24 B. ceti isolates were assigned primarily to sequence type 26 (ST26) (N = 21) and, in a few cases, ST49 (N = 3). The multilocus sequence typing (cgMLST) based on whole genome sequencing (WGS) data showed that strains from Italy clustered into four genetically distinct clades. Plotting these clades onto a geographic map suggests a link between their phylogeny and the topographical distribution. These results support the role of B. ceti as a primary neurotropic pathogen for striped dolphins and highlight the utility of WGS data in understanding the evolution of this emerging pathogen.

12.
Pathogens ; 12(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37111502

ABSTRACT

Six years have now gone by since Dr James T [...].

13.
Vet Rec ; 192(5): 216-217, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36866908
14.
Pathogens ; 12(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36839494

ABSTRACT

Since the start of the COVID-19 pandemic, which has hitherto killed almost 7 million people worldwide-although the true mortality figures could be much higher-we have witnessed a progressively expanding number of domestic and wild mammalian species acquiring Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) infection, both spontaneously and experimentally [...].

15.
Vet Sci ; 9(12)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36548853

ABSTRACT

The importance of assessing neurochemical processes in the cetacean brain as a tool for monitoring their cognitive health and to indirectly model human neurodegenerative conditions is increasingly evident, although available data are largely semiquantitative. High-resolution MRI for post-mortem brains and stereology allow for quantitative assessments of the cetacean brain. In this study, we scanned two brains of bottlenose dolphins in a 7-Tesla (7T) MR scanner and assessed the connectivity of the inferior colliculi and ventral cochlear nuclei using diffusion tensor imaging (DTI). Serial thick sections were investigated stereologically in one of the dolphins to generate rigorous quantitative estimates of identifiable cell types according to their morphology and expression of molecular markers, yielding reliable cell counts with most coefficients of error <10%. Fibronectin immunoreactivity in the dolphin resembled the pattern in a human chronic traumatic encephalopathy brain, suggesting that neurochemical compensation for insults such as hypoxia may constitute a noxious response in humans, while being physiological in dolphins. These data contribute to a growing body of knowledge on the morphological and neurochemical properties of the dolphin brain and highlight a stereological and neuroimaging workflow that may enable quantitative and translational assessment of pathological processes in the dolphin brain in the future.

16.
Pathogens ; 11(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36422607

ABSTRACT

Since its discovery in December 2019 in China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 630 million cases of human infection globally, along with almost 7 million deaths due to coronavirus disease 2019 (COVID-19) (World Health Organisation, WHO) [...].

17.
Pathogens ; 11(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36297153

ABSTRACT

Due to marine mammals' demonstrated susceptibility to SARS-CoV-2, based upon the homology level of their angiotensin-converting enzyme 2 (ACE2) viral receptor with the human one, alongside the global SARS-CoV-2 occurrence and fecal contamination of the river and marine ecosystems, SARS-CoV-2 infection may be plausibly expected to occur also in cetaceans, with special emphasis on inshore species like bottlenose dolphins (Tursiops truncatus). Moreover, based on immune and inflammatory responses to SARS-CoV-2 infection in humans, macrophages could also play an important role in antiviral defense mechanisms. In order to provide a more in-depth insight into SARS-CoV-2 susceptibility in marine mammals, we evaluated the presence of SARS-CoV-2 and the expression of ACE2 and the pan-macrophage marker CD68. Aliquots of tissue samples, belonging to cetaceans stranded along the Italian coastline during 2020-2021, were collected for SARS-CoV-2 analysis by real-time PCR (RT-PCRT) (N = 43) and Immunohistochemistry (IHC) (N = 59); thirty-two aliquots of pulmonary tissue sample (N = 17 Tursiops truncatus, N = 15 Stenella coeruleoalba) available at the Mediterranean Marine Mammal Tissue Bank (MMMTB) of the University of Padua (Legnaro, Padua, Italy) were analyzed to investigate ACE2 expression by IHC. In addition, ACE2 and CD68 were also investigated by Double-Labeling Immunofluorescence (IF) Confocal Laser Microscopy. No SARS-CoV-2 positivity was found in samples analyzed for the survey while ACE2 protein was detected in the lower respiratory tract albeit heterogeneously for age, gender/sex, and species, suggesting that ACE2 expression can vary between different lung regions and among individuals. Finally, double IF analysis showed elevated colocalization of ACE2 and CD68 in macrophages only when an evident inflammatory reaction was present, such as in human SARS-CoV-2 infection.

18.
Vet Rec ; 191(6): 260, 2022 09.
Article in English | MEDLINE | ID: mdl-36149719
19.
Sci Rep ; 12(1): 12635, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879404

ABSTRACT

Nearly two decades ago, pathologic examination results suggested that acoustic factors, such as mid-frequency active naval military sonar (MFAS) could be the cause of acute decompression-like sickness in stranded beaked whales. Acute systemic gas embolism in these whales was reported together with enigmatic cystic liver lesions (CLL), characterized by intrahepatic encapsulated gas-filled cysts, tentatively interpreted as "gas-bubble" lesions in various other cetacean species. Here we provide a pathologic reinterpretation of CLL in odontocetes. Among 1,200 cetaceans necropsied, CLL were only observed in four striped dolphins (Stenella coeruleoalba), with a low prevalence (2%, N = 179). Together, our data strongly suggest that CLL are the result of the combination of a pre-existing or concomitant hepatic vascular disorder superimposed and exacerbated by gas bubbles, and clearly differ from acute systemic gas embolism in stranded beaked whales that is linked to MFAS. Budd-Chiari-like syndrome in dolphins is hypothesized based on the present pathologic findings. Nonetheless, further researched is warranted to determine precise etiopathogenesis(es) and contributing factors for CLL in cetaceans.


Subject(s)
Dolphins , Embolism, Air , Leukemia, Lymphocytic, Chronic, B-Cell , Stenella , Animals , Whales
SELECTION OF CITATIONS
SEARCH DETAIL
...