Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 880: 163388, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37030375

ABSTRACT

Sludge production in the wastewater treatment sector is consistently increasing and represents a critical environmental and economic issue. This study evaluated an unconventional approach for treating wastewater generated from the cleaning of non-hazardous plastic solid waste during the plastic recycling process. The proposed scheme was based on sequencing batch biofilter granular reactor (SBBGR) technology, which was compared with the activated sludge-based treatment currently in operation. These treatment technologies were compared regarding sludge quality, specific sludge production, and effluent quality to highlight whether the reduced sludge production shown by SBBGR corresponded to an increase in the concentration of hazardous compounds in the sludge. The SBBGR technology showed remarkable removal efficiencies (TSS, VSS, and NH3 > 99 %; COD >90 %; TN and TP > 80 %) and a sludge production six-fold lower than the conventional plant (in terms of kgTSS/kg CODremoved). Biomass from the SBBGR did not show a significant accumulation of organic micropollutants (i.e., long-chain hydrocarbons, chlorinated pesticides and chlorobenzenes, PCB, PCDD/F, PAH, chlorinated and brominated aliphatic compounds, and aromatic solvents), whereas a certain accumulation of heavy metals was observed. Furthermore, an initial attempt to compare the operating costs of the two treatment approaches revealed that the SBBGR technology would provide 38 % savings.


Subject(s)
Sewage , Waste Disposal, Fluid , Plastics , Bioreactors , Filtration
2.
Chemosphere ; 311(Pt 2): 137126, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334739

ABSTRACT

The fluctuation in the number of people in tourist areas affects the wastewater quality and quantity. Constructed wetlands (CWs) aim to simulate physical, chemical, and biological processes occurring in natural environments for wastewater treatment and are considered a sustainable system. The current study aimed at evaluating the effectiveness of in-vessel CWs for supporting the wastewaters treatment plants in periods of overloading. Such approach can be quickly implementable, economic, and the CWs can be fast regenerated in the framework of sustainable good practices. Three pilot scale CWs were prepared in as many containers layering 10 cm of gravel, 60 cm of sand and 10 cm of gravel, and placing pieces of giant reed rhizomes in the upper layers. The bottom of each CW had a tap, and CWs were irrigated with a real municipal sewage three times a week. Before each new irrigation, the tap was opened, and the effluent collected for determining gross parameters, elemental composition, and contaminants of emerging concern (CECs). CWs significantly reduced almost all gross parameters considered and half the CECs, except for a couple of metabolites of corresponding parental compounds. With regards to the potentially toxic elements, all reduced their concentration from the influents to the effluents. The results of this study were promising and highlighted good efficiency of constructed wetlands as pre-treatment of real municipal sewage to reduce the overloading of the wastewater treatment plant.

3.
J Environ Manage ; 318: 115585, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35759970

ABSTRACT

The aim of this work is to assess how the presence of cellulose-based bio-plastics influence the biological stabilization of mixed Municipal Solid Waste (MSW). For the scope, two cellulose acetate bio-plastics have been mixed with a synthetic mixed waste to create samples with and without bio-plastics. A self-induced biostabilization has been carried out for 7 and 14 days where temperature and off-gas have been monitored continuously. Results about temperature evolution, O2 consumption, CO2 production and respiratory quotient did not show a substantial difference regarding both the duration of the process and the presence of cellulose-based bio-plastics on the mixture. On the average, the temperature peak and the maximum daily O2 consumption and CO2 production were 52.2 °C, 35.81 g O2/kg DM *d and 48.95 g CO2/kg DM *d respectively. Disintegration of bio-plastics samples after 7 and 14 days were comparable (on the average 23.13%). The self-induced biostabilization gave its main contribution after 4 days and resulted almost finished at the end of the day 7 of the process. Results showed that cellulose-based bio-plastics did not give a negative effect on mixed MSW biological stabilization and suggest a possible management, aiming at energy recovery of the outputs.


Subject(s)
Refuse Disposal , Solid Waste , Carbon Dioxide , Cellulose , Plastics , Refuse Disposal/methods , Solid Waste/analysis
4.
J Environ Manage ; 284: 112011, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33515837

ABSTRACT

The effectiveness of an advanced treatment of wastewater generated by non-hazardous plastic solid waste (PSW) washing, based on the Sequencing Batch Biofilter Granular Reactor (SBBGR), was assessed in terms of gross parameters, removal efficiencies and sludge production. The proposed treatment was also compared with the conventional treatment, which was based on primary and secondary treatments, using the activated sludge process, performed by Recuperi Pugliesi, a leading company in the plastic recycling industry located in Bari, Italy. The company produces low-density polyethylene (LDPE) regenerated granules from PSW used in agricultural and floricultural greenhouse activities and industrial packaging after a washing stage in the aqueous phase. The latter generates large volumes of wastewater, the conventional treatment of which is characterised by large quantities of sludge and the associated disposal problems. Under steady-state conditions, the SBBGR provided impressive removal efficiencies regarding the main gross parameters (over 90% for COD and TKN, over 99% for BOD5, TSS, VSS and NH3, and over 80% for TN) with a statistically better effluent quality than that of the conventional treatment. The SBBGR effluent quality was modelled in terms of washing water characteristics by using generalized additive models (GAMs). The SBBGR treatment was characterised by a specific sludge production five times lower than that of the conventional treatment (0.21 kg TSS vs. 1.0 kg TSS per m3 of wastewater treated). Compared with the conventional treatment, the proposed process showed a five-fold reduction in the cost of sludge disposal, which saved 50% of the operating cost.


Subject(s)
Wastewater , Water Purification , Bioreactors , Italy , Plastics , Sewage , Solid Waste , Waste Disposal, Fluid
5.
Pathogens ; 9(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266323

ABSTRACT

This study investigated the environmental contamination of groundwater as a consequence of the discharge of treated wastewater into the soil. The investigation focused on a wastewater treatment plant located in an area fractured by karst in the Salento peninsula (Apulia, Italy). Water samples were collected at four sites (raw wastewater, treated wastewater, infiltration trench, and monitoring well), monthly from May to December 2019 (with the exception of August), and were tested for (1) panel of bacteria; (2) enteric viruses; and (3) chemical substances. A gradual reduction in the concentration of bacteria, viruses and contaminants of emerging concern was observed across the profile of soil fissured by karst. All monitored bacteria were absent from the monitoring well, except for Pseudomonas aeruginosa. Pepper mild mottle virus and adenovirus were detected at all sampling sites. Personal care products and X-ray contrast media showed the greatest decrease in concentration from infiltration trench to the monitoring well, while the highest residual concentrations in the monitoring well were found for anticonvulsants (78.5%), antimicrobials (41.3%), and antipsychotic drugs (38.6%). Our results show that parameters provided by current law may not always be sufficient to evaluate the sanitary risk relating to the discharge of treated wastewater to the soil.

6.
J Environ Manage ; 269: 110714, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32560980

ABSTRACT

Nowadays, sludge management represents one of the most critical challenges in the field of sewage treatment for economic and environmental impacts. Therefore, the reduction of sludge has become a major issue for the operators of municipal wastewater treatment plants. In the present paper, a new system, whose acronym is MULESL (MUch LEss SLudge), is proposed and tested at full scale for reducing the quantity of sludge in the water line of the sewage treatment plant. MULESL system takes the advantage of maintenance metabolism to significantly reduce the sludge production. The effectiveness of MULESL system in removing the typical pollutants and reducing sludge production was evaluated at full scale by using 3500 PE unit located in Putignano's WWTP (Puglia, Italy). This unit was obtained by retrofitting an existing activated sludge basin. The results obtained over 1-year period, during which MULESL unit treated the effluent of the preliminary treatment step, have indicated that it was characterized by a specific sludge production as low as 0.13 kg of dry sludge per kg of COD removed; 77% lower than that recorded for primary and secondary treatments of the conventional plant during the same period. This sludge reduction was obtained with a plant volume 27% smaller than that of the conventional water line. Furthermore, the organic matter of the sludge was already stabilized, thus allowing to save investment costs for digestion process facilities. Finally, MULESL unit guaranteed a mean removal efficiency higher than 95% for COD, BOD5, TSS, TKN, NH3 and TN.


Subject(s)
Sewage , Wastewater , Bioreactors , Italy , Waste Disposal, Fluid , Water
7.
N Biotechnol ; 56: 71-78, 2020 May 25.
Article in English | MEDLINE | ID: mdl-31837475

ABSTRACT

In the present study, the possibility of recovering both thermal energy and water for agricultural purposes from sewage is evaluated. A treatment plant, based on a sequencing batch biofilter granular reactor (SBBGR) followed by sand filtration and coupled with a solar wastewater source heat pump, was operated from September to November 2018 at a set-point temperature of 14 °C to verify the stability of heat recovery efficiency and the suitability of plant effluent to be reused for irrigation. Heat recovery did not influence the SBBGR treatment and disinfection efficiency, which removed about 90% of suspended solids, chemical and biochemical oxygen demand and ammonia, as well as 70% of total nitrogen, 3 log10 units of Escherichia coli and more than 1 log10 unit of Clostridium perfringens. Furthermore, after sand filtration, water quality complied with the standards for agricultural reuse currently in force in several countries. Energy extracted from SBBGR was mainly influenced by environmental conditions, affecting wastewater temperature, and also by wastewater composition, affecting the energy release due to bacterial metabolic activity for carbon and nitrogen removal. Notably, no evident deterioration of energy extraction efficiency from the SBBGR was observed, suggesting negligible fouling phenomena on the submerged thermal exchanger.


Subject(s)
Bioreactors , Clostridium perfringens/metabolism , Escherichia coli/metabolism , Sewage/microbiology , Wastewater/microbiology , Water Purification , Agriculture , Temperature
8.
J Environ Manage ; 215: 366-376, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29602026

ABSTRACT

This study proposes the evaluation of the suitability of mesophilic anaerobic digestion as a simple technology for the treatment of the citrus waste produced by small-medium agro-industrial enterprises involved in the transformation of Citrus fruits. Two different stocks of citrus peel waste were used (i.e., fresh and stored citrus peel waste), to evaluate the influence of waste composition (variability in the type of processed Citrus fruits) and of storage (potentially necessary to operate the anaerobic digester continuously over the whole year due to the seasonality of the production) on anaerobic degradation treatability. A thorough characterization of the two waste types has been performed, showing that the fresh one has a higher solid and organic content, and that, in spite of the similar values of oil fraction amounts, the two stocks are significantly different in the composition of essential oils (43% of limonene and 34% of linalyl acetate in the fresh citrus waste and 20% of limonene and 74% of linalyl acetate in the stored citrus waste). Contrarily to what observed in previous studies, anaerobic digestion was successful and no reactor acidification occurred. No inhibition by limonene and linalyl acetate even at the maximum applied organic load value (i.e., 2.72 gCODwaste/gVSinoculum) was observed in the treatment of the stored waste, with limonene and linalyl acetate concentrations of 104 mg/l and 385 mg/l, respectively. On the contrary, some inhibition was detected with fresh citrus peel waste when the organic load increased from 2.21 to 2.88 gCODwaste/gVSinoculum, ascribable to limonene at initial concentration higher than 150 mg/l. A good conversion into methane was observed with fresh peel waste, up to 0.33  [Formula: see text] at the highest organic load, very close to the maximum theoretical value of 0.35 [Formula: see text] , while a lower efficiency was achieved with stored peel waste, with a reduction down to 0.24  [Formula: see text] at the highest organic load.


Subject(s)
Citrus , Cyclohexenes/metabolism , Refuse Disposal , Terpenes/metabolism , Limonene , Methane
9.
Sci Total Environ ; 580: 17-25, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27951439

ABSTRACT

The availability of high quality water has become a constraint in several countries. Agriculture represents the main water user, therefore, wastewater reuse in this area could increase water availability for other needs. This research was aimed to provide a simplified scheme for treatment and reuse of municipal and domestic wastewater based on Sequencing Batch Biofilter Granular Reactors (SBBGRs). The activity was conducted at pilot-scale and particular attention was dedicated to the microbiological quality of treated wastewater to evaluate the risk associated to its reuse. The following microorganisms were monitored: Escherichia coli, Salmonella, Clostridium perfringens, somatic coliphages, adenovirus, enterovirus, Giardia lamblia and Cryptosporidium parvum. The possibility of SBBGR enhancement with sand filtration was also evaluated. The SBBGR removed >90% of suspended solids and chemical oxygen demand, and 80% and 60% of total nitrogen and phosphorous, respectively. SBBGR was also effective in removing microbial indicators, from 1 (for C. perfringens) up to 4 (for E. coli) log units of these microorganisms. In particular, the quality of SBBGR effluent was already compatible with the WHO criteria for reuse (E. coli ≤103CFU/100mL). Sand filtration had positive effects on plant effluent quality and the latter could even comply with more restrictive reuse criteria.


Subject(s)
Agriculture , Filtration , Wastewater , Water Microbiology , Water Purification/methods , Waste Disposal, Fluid
10.
Sci Total Environ ; 571: 809-18, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27450254

ABSTRACT

In order to mitigate the potential effects on the human health which are associated to the use of treated wastewater in agriculture, antibiotic resistance genes (ARGs) are required to be carefully monitored in wastewater reuse processes and their spread should be prevented by the development of efficient treatment technologies. Objective of this study was the assessment of ARGs reduction efficiencies of a novel technological treatment solution for agricultural reuse of municipal wastewaters. The proposed solution comprises an advanced biological treatment (Sequencing Batch Biofilter Granular Reactor, SBBGR), analysed both al laboratory and pilot scale, followed by sand filtration and two different disinfection final stages: ultraviolet light (UV) radiation and peracetic acid (PAA) treatments. By Polymerase Chain Reaction (PCR), the presence of 9 ARGs (ampC, mecA, ermB, sul1, sul2, tetA, tetO, tetW, vanA) were analysed and by quantitative PCR (qPCR) their removal was determined. The obtained results were compared to the reduction of total bacteria (16S rDNA gene) and of a faecal contamination indicator (Escherichia coli uidA gene). Only four of the analysed genes (ermB, sul1, sul2, tetA) were detected in raw wastewater and their abundance was estimated to be 3.4±0.7 x10(4) - 9.6±0.5 x10(9) and 1.0±0.3 x10(3) to 3.0±0.1 x10(7) gene copies/mL in raw and treated wastewaters, respectively. The results show that SBBGR technology is promising for the reduction of ARGs, achieving stable removal performance ranging from 1.0±0.4 to 2.8±0.7 log units, which is comparable to or higher than that reported for conventional activated sludge treatments. No reduction of the ARGs amount normalized to the total bacteria content (16S rDNA), was instead obtained, indicating that these genes are removed together with total bacteria and not specifically eliminated. Enhanced ARGs removal was obtained by sand filtration, while no reduction was achieved by both UV and PAA disinfection treatments tested in our study.


Subject(s)
Agriculture/methods , Bacteria/genetics , Conservation of Water Resources/methods , Drug Resistance, Microbial , Genes, Bacterial , Waste Disposal, Fluid/methods , Waste Disposal, Fluid/instrumentation , Wastewater/microbiology
11.
Sci Total Environ ; 543(Pt A): 206-213, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26584070

ABSTRACT

In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 µS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia coli<1000 CFU/100 mL) for agricultural reuse. In particular, the biological treatment by SBBGR removed 3.8±0.4 log units of Giardia lamblia, 2.8±0.8 log units of E. coli, 2.5±0.7 log units of total coliforms, 2.0±0.3 log units of Clostridium perfringens, 2.0±0.4 log units of Cryptosporidium parvum and 1.7±0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm(2) and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores.


Subject(s)
Wastewater/microbiology , Water Purification/methods , Disinfection/methods , Italy , Waste Disposal, Fluid , Water Microbiology
12.
Sci Total Environ ; 506-507: 631-43, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25433384

ABSTRACT

The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams.


Subject(s)
Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Contrast Media/chemistry , Electrodes , Industrial Waste/analysis , Metals/chemistry , Organic Chemicals , Water Pollutants, Chemical/analysis
13.
Water Res ; 54: 337-46, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24583525

ABSTRACT

Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production.


Subject(s)
Industrial Waste/analysis , Sewage/microbiology , Textiles , Wastewater/microbiology , Water Purification/methods , Aerobiosis , Batch Cell Culture Techniques , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Biomass , Bioreactors/microbiology , Filtration/instrumentation , In Situ Hybridization, Fluorescence , Italy
14.
Bioresour Technol ; 129: 624-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23313178

ABSTRACT

The Sequencing Batch Biofilter Granular Reactor (SBBGR) is a promising wastewater treatment technology characterized by high biomass concentration in the system, good depuration performance and low sludge production. Its main drawback is the high energy consumption required for wastewater recirculation through the reactor bed to ensure both shear stress and oxygen supply. Therefore, the effect of low recirculation flow on the long-term (38 months) performance of a laboratory scale SBBGR was studied. Both the microbial components of the granules, and their main metabolic activities were evaluated (heterotrophic oxidation, nitrification, denitrification, fermentation, sulphate reduction and methanogenesis). The results indicate that despite reduced recirculation, the SBBGR system maintained many of its advantageous characteristics.


Subject(s)
Bacteria, Aerobic/isolation & purification , Bacteria, Aerobic/metabolism , Batch Cell Culture Techniques/instrumentation , Bioreactors/microbiology , Methane/metabolism , Sewage/microbiology , Equipment Design , Equipment Failure Analysis , Methane/isolation & purification
15.
Water Res ; 46(16): 5316-26, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22819872

ABSTRACT

Sequencing batch biofilter granular reactor (SBBGR) is a recently developed biological wastewater treatment technology characterised by a very low sludge production, among other numerous advantages. Even if costs for sludge treatment and disposal are mainly dependent on the amount of sludge produced, sludge properties, especially those linked to solid-liquid separation, play a key role as well. In fact, such properties deeply influence the type of treatments sludge has to undergo before disposal and the final achievable solids concentration, strongly affecting treatment and disposal costs. As sludge from SBBGR is a special mixture of biofilm and aerobic granules, no information is available so far on its treatability. This study addresses the characterisation of the sludge produced from SBBGR in terms of some physical properties (settling properties, dewaterability, rheology). The results show that such sludge is characterised by good settling and dewatering properties, adding a new advantage for the full-scale application of SBBGR technology.


Subject(s)
Bioreactors , Filtration/methods , Sewage/analysis , Waste Disposal, Fluid/methods , Water Purification/methods , Centrifugation , Chemical Precipitation , Rheology
16.
Bioresour Technol ; 106: 63-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22206914

ABSTRACT

Wastewaters generated by many economically relevant industrial activities contain recalcitrant organic compounds which pass unaltered through biological stage of the treatment plant making it difficult to meet the discharge limits currently in force. Therefore, an additional treatment is usually required to remove these compounds. In this study, the application of ozonation together with biological treatment was investigated. In particular, the effectiveness of biological degradation followed by or integrated with ozonation for treating the effluents produced by three environmentally relevant activities (i.e., leather and textile processing and municipal waste landfilling) are compared in the present paper. The results show that biological treatment followed by ozonation does not guarantee depurative levels sufficient for discharge for landfill leachates and tannery wastewater. On the contrary, thanks to the synergy between biological degradation and ozonation, integrated treatment significantly improves the process performance for all the investigated wastewaters, thus allowing the discharge limits to be met.


Subject(s)
Ozone/chemistry , Water Purification/methods , Batch Cell Culture Techniques , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Bioreactors , Carbon/analysis , Cities , Filtration , Industrial Waste/analysis , Italy , Nitrogen/analysis , Oxidation-Reduction , Tanning , Textiles , Waste Disposal, Fluid , Water Pollutants, Chemical/isolation & purification
17.
N Biotechnol ; 29(1): 9-16, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21558025

ABSTRACT

Textile wastewater is difficult to treat as it usually contains considerable amounts of different pollutants, which are often recalcitrant, toxic and inhibitory. Therefore, complex treatment schemes based on the sequence of various steps are usually required for an effective treatment. This explains why textile effluents are often treated in centralized plants and sometimes mixed with municipal wastewater. The adoption of new technologies for on-site treatment, instead, would be optimal, deeply reducing treatment costs. An innovative technology exhibiting several characteristics appropriate for the attainment of such a goal is sequencing batch biofilter granular reactor (SBBGR). To assess the suitability of this technology, two lab-scale reactors were operated, treating mixed municipal-textile wastewater and a pure textile effluent, respectively. Results have demonstrated that mixed wastewater can be successfully treated with very low hydraulic retention times (less than 10 hours). Furthermore, SBBGR shows to be an effective pre-treatment for textile wastewater for discharge into sewer systems. The economic evaluation of the process showed operative costs of 0.10 and 0.19 € per m(3) of mixed wastewater and textile wastewater, respectively.


Subject(s)
Bioreactors , Industrial Waste , Textile Industry , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods , Sewage/chemistry , Waste Disposal, Fluid/economics , Water Pollutants/chemistry , Water Purification/economics , Water Purification/instrumentation , Water Purification/methods
18.
Water Res ; 44(12): 3635-44, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20494396

ABSTRACT

An innovative process based on ozone-enhanced biological degradation, carried out in an aerobic granular biomass system (SBBGR--Sequencing Batch Biofilter Granular Reactor), was tested at pilot scale for tannery wastewater treatment chosen as representative of industrial recalcitrant wastewater. The results have shown that the process was able to meet the current discharge limits when the biologically treated wastewater was recirculated through an adjacent reactor where a specific ozone dose of 120 mg O3/L(influent) was used. The benefits produced by using ozone were appreciable even visually since the final effluent of the process looked like tap water. In comparison with the conventional treatment, the proposed process was able to reduce the sludge production by 25-30 times and to save 60% of operating costs. Molecular in situ detection methods were employed in combination with the traditional measurements (oxygen uptake rate, total protein content, extracellular polymeric substances and hydrophobicity) to evaluate microbial activity and composition, and the structure of the biomass. A stable presence of active bacterial populations was observed in the biomass with the simultaneous occurrence of distinctive functional microbial groups involved in carbon, nitrogen and sulphate removal under different reaction environments established within the large microbial aggregates. The structure and activity of the biomass were not affected by the use of ozone.


Subject(s)
Industrial Waste/analysis , Refuse Disposal , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/methods , Water Purification/economics , Water Purification/methods , Alphaproteobacteria/cytology , Alphaproteobacteria/drug effects , Biodegradation, Environmental/drug effects , Biomass , In Situ Hybridization, Fluorescence , Nitrogen/analysis , Oxygen/analysis , Ozone/pharmacology , Sewage/analysis , Sewage/microbiology , Tanning
19.
Water Res ; 44(6): 1825-32, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20137803

ABSTRACT

This paper reports the results of an investigation aimed at evaluating the performance of an innovative technology (SBBGR system - Sequencing Batch Biofilter Granular Reactor), characterised by a low sludge production, for treating municipal wastewater at demonstrative scale. The results have shown that even at the maximum investigated organic load (i.e., 2.5 kg COD/m(3) d), the plant removed 80% of COD, total suspended solids and nitrogen content with relative residual concentrations lower than the Italian limits for discharge into soil. The process was characterised by a very low sludge production (i.e., 0.12-0.14 kg TSS/kg COD(removed)) ascribable to the high sludge age in the system (thetac >120 d). Molecular in situ detection methods and microscopy staining procedures were employed in combination with the traditional measurements (oxygen uptake rate and total protein content) to evaluate both the microbial activity and composition, and the structure of the biomass. A stable presence of active bacterial populations (mainly Proteobacteria) was found within compact and dense aggregates.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Filtration/instrumentation , Sewage/microbiology , Waste Disposal, Fluid/methods , Water Purification/methods , Bacteria/genetics , Biodegradation, Environmental , Biomass , Cities , Kinetics , Nitrogen/analysis , Oxygen/isolation & purification
20.
Bioresour Technol ; 101(6): 1732-6, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19896841

ABSTRACT

The present paper reports the results of an investigation aimed at evaluating the effectiveness of magnesium ammonium phosphate precipitation (MAP), commonly called struvite, for removing ammonia from a mature municipal landfill leachate. MAP precipitation was carried out at laboratory scale by adding phosphoric acid and magnesium oxide as external sources of phosphorus and magnesium, respectively, and regulating the pH at 9.0. The effect of Mg:NH(4):PO(3) ratio was studied. Due to the low solubility of MgO, a low ammonia removal efficiency (i.e. 67%), with a rather high residual concentration, was obtained when the stoichiometric molar ratio was applied. However, by doubling the amount of magnesium oxide (i.e. by using a molar ratio of 2:1:1), ammonia removal efficiency increased up to 95% with a residual concentration compatible with a successive biological treatment. The struvite produced in the present study showed a composition close to the theoretical one. Furthermore, the precipitate was characterized by a heavy metal content much lower than that of typical raw soil, excluding any concern about heavy metal contamination in the case of its use as a fertilizer. The economic analysis of the process showed that ammonia can be removed at a cost of 9.6 euro/kg NH(4)-N(removed). This value can be greatly reduced, however, if the value of the struvite produced is considered.


Subject(s)
Biotechnology/methods , Nitrogen/chemistry , Refuse Disposal/methods , Ammonia/chemistry , Cities , Fertilizers , Hydrogen-Ion Concentration , Magnesium Compounds/chemistry , Metals, Heavy/chemistry , Oxygen/chemistry , Phosphates/chemistry , Quaternary Ammonium Compounds/chemistry , Reproducibility of Results , Soil , Struvite
SELECTION OF CITATIONS
SEARCH DETAIL
...