Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Database (Oxford) ; 20202020 11 25.
Article in English | MEDLINE | ID: mdl-33238003

ABSTRACT

MOTIVATION: Siberian sturgeon is a long lived and late maturing fish farmed for caviar production in 50 countries. Functional genomics enable to find genes of interest for fish farming. In the absence of a reference genome, a reference transcriptome is very useful for sequencing based functional studies. RESULTS: We present here a high-quality transcriptome assembly database built using RNA-seq reads coming from brain, pituitary, gonadal, liver, stomach, kidney, anterior kidney, heart, embryonic and pre-larval tissues. It will facilitate crucial research on topics such as puberty, reproduction, growth, food intake and immunology. This database represents a major contribution to the publicly available sturgeon transcriptome reference datasets. AVAILABILITY: The database is publicly available at http://siberiansturgeontissuedb.sigenae.org Supplementary information:  Supplementary data are available at Database online.


Subject(s)
Fishes , Transcriptome , Animals , Fishes/genetics , Gene Expression Profiling , Genome , Sequence Analysis , Sequence Analysis, RNA , Transcriptome/genetics
2.
Data Brief ; 31: 105741, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32529009

ABSTRACT

RNA-Seq transcriptome data from twenty Siberian sturgeon gonads at different developmental stages is described: ten undifferentiated gonads, six gonads of immature males and four gonads from immature females. Siberian sturgeon, Acipenser baerii, is long-lived, late-maturing fish farmed in 50 countries but its production remains on a craftsman scale when compared to industrial species. Sturgeon genetic and physiological studies are less developed than for industrial fish. The data presented hereafter enables fundamental studies on the regulatory mechanisms of sturgeon gonad development, which can further be applied both in aquaculture and in fundamental research.

3.
Data Brief ; 31: 105820, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32596425

ABSTRACT

Siberian sturgeon, Acipenser baerii, is a commercially valuable fish for flesh and caviar production and a threatened species. We produced transcriptomic data for ten tissues with relevance to puberty, reproduction, early development, growth and food intake. The data includes RNA-Seq read sets of brain, pituitary, anterior-kidney, kidney, stomach, liver, heart, embryonic, pre-larval, and immature gonad sequences. Tissues were collected from sex differentiated fish (17 to 42 months of age, 66 to 85 cm) RNA was extracted and sequenced. Our purpose is to facilitate fundamental studies of sturgeon physiology to wild and aquaculture populations management.

4.
Gen Comp Endocrinol ; 268: 96-109, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30081002

ABSTRACT

The sturgeon family includes many species that are lucrative for commercial caviar production, some of which face critical conservation problems. The purpose of this study was to identify genes involved in gonadal sex differentiation in sturgeons, contributing to our understanding of the biological cycle of this valuable species. A high-quality de novo Siberian sturgeon gonadal transcriptome was built for this study using gonadal samples from undifferentiated fish at 3, 5, and 6 months of age; recently sex-differentiated fish at 9 months of age; and immature males and females at 14-17 months of age. Undifferentiated fish were sexed after validation of forkhead box L2 (foxl2) and cytochrome P450, family 19, subfamily A, and polypeptide 1a (cyp19a1a) as sex markers, and the transcriptomes of the 3-month-old undifferentiated fish, 5-6-month-old future females, and 5-6-month-old putative males were compared. The ovarian program was associated with strong activation of genes involved in estrogen synthesis (cyp19a1, foxl2, and estradiol 17-beta-dehydrogenase 1), stem-cell niche building and regulation, and sex-specific nerve cell development. The genes related to the stem-cell niche were: (1) the family of iroquois-class homeodomain proteins 3, 4, and 5 (irx3, irx4, irx5-1, irx5-2, and irx5-3), which are essential for somatic-germ cell interaction; (2) extracellular matrix remodeling genes, such as collagen type XXVIII alpha 1 chain and collagen type II alpha 1 chain, matrix metalloproteinases 24-1 and 24-2, and NADPH oxidase organizer 1, which, along with the somatic cells, provide architectural support for the stem-cell niche; and (3) mitogenic factors, such as lim homeobox 2, amphiregulin, G2/M phase-specific E3 ubiquitin-protein ligase, and connector enhancer of kinase suppressor of ras 2, which are up regulated in conjunction with the anti-apoptotic gene G2/M phase-specific E3 ubiquitin-protein ligase suggesting a potential involvement in regulating the number of germ cells. Genes related to sex-specific nerve cell developments were: the neurofilament medium polypeptides, the gene coding for serotonin receptor 7, 5-hydroxytryptamine receptor 7; neurotensin, isoform CRA-a, the neuron-specific transmembrane protein Delta/Notch-like epidermal growth factor-related receptor; and insulinoma-associated protein 1. The putative testicular program was poorly characterized by elements of the immune response. The classic markers of maleness were not specifically activated, indicating that testicular differentiation occurs at a later stage. In sum, the ovarian program, but not the testicular program, is in place by 5-6 months of age in the Siberian sturgeon. The female program is characterized by estrogen-related genes with well-established roles in gonadal differentiation, but also by several genes with no previously-described function in the ovarian development of fish. These newly-reported genes are involved in stem-cell niche building and regulation as well as sex-specific nerve development.


Subject(s)
Fishes/metabolism , Gene Expression Profiling/methods , Gonads/metabolism , Sex Differentiation/physiology , Animals , Female , Male
5.
Mol Reprod Dev ; 83(1): 19-36, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26461178

ABSTRACT

Sexual development prior to gonadal sex differentiation is regulated by various molecular mechanisms. In fish, a "molecular sex-differentiation period" has been identified in species for which sex can be ascertained prior to gonadal sex differentiation. The present study was designed to identify such a period in a species for which no genetic sex markers or monosex populations are available. Siberian sturgeons undergo a slow sex-differentiation process over several months, so gonad morphology and gene expression was tracked in fish from ages 3-27 months to identify the sex-differentiation period. The genes amh, sox9, and dmrt1 were selected as male gonad markers; cyp19a1a and foxl2a as female gonad markers; and cyp17a1 and ar as markers of steroid synthesis and steroid receptivity. Sex differentiation occurred at 8 months, and was preceded by a molecular sex-differentiation period at 3-4 months, at which time all of the genes except ar showed clear expression peaks. amh and sox9 expression seemed to be involved in male sexual development whereas dmrt1, a gene involved in testis development in metazoans, unexpectedly showed a pattern similar to those of the genes known to be involved in female gonadal sex differentiation (cyp19a1 and foxl2a). In conclusion, the timing of and gene candidates involved with molecular sex differentiation in the Siberian sturgeon were identified.


Subject(s)
Fishes/growth & development , Fishes/genetics , Gene Expression Regulation, Developmental , Gonads/growth & development , Sex Differentiation/genetics , Animals , Female , Gene Expression Profiling , Germ Cells/cytology , Germ Cells/ultrastructure , Gonads/anatomy & histology , Gonads/metabolism , Male , Ovary/anatomy & histology , Ovary/growth & development , Testis/anatomy & histology , Testis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...