Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Microbes Infect ; : 105384, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944110

ABSTRACT

Antimicrobial treatment of methicillin-resistant Staphylococcus pseudintermedius associated with canine wounds represents an important challenge. The aim of this study was to create a canine wound infection model, Lubbock Chronic Wound Biofilm (LCWB), with a focus on S. pseudintermedius, drawing inspiration from the established human model involving Staphylococcus aureus. Methicillin-resistant S. pseudintermedius 115 (MRSP) and Pseudomonas aeruginosa 700 strains, isolated from dog wounds, were used to set up the LCWB at 24, 48 and 72 h. The LCWBs were evaluated in terms of volume, weight, and microbial CFU/mg. The microbial spatial distribution in the LCWBs was assessed by SEM and CLSM imaging. The best incubation time for the LCWB production in terms of volume (3.38 cm3 ± 0.13), weight (0.86 gr ± 0.02) and CFU/mg (up to 7.05 × 106 CFU/mg ± 2.89 × 105) was 48 h. The SEM and CLSM images showed a major viable microbial colonization at 48 h with non-mixed bacteria with a prevalence of MRSP on the surface and P. aeruginosa 700 in the depth of the wound. The obtained findings demonstrate the capability of S. pseudintermedius to grow together P. aeruginosa in the LCWB model, representing the suitable model to reproduce the animal chronic wound in vitro.

2.
Gels ; 10(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38391440

ABSTRACT

This study aimed to evaluate the ability of photodynamic therapy, based on the use of a gel containing 5% delta aminolaevulinic acid (ALAD) for 45' followed by irradiation with 630 nm LED (PDT) for 7', to eradicate Candida albicans strains without damaging the gingiva. C. albicans oral strains and gingival fibroblasts (hGFs) were used to achieve these goals. The potential antifungal effects on a clinical resistant C. albicans S5 strain were evaluated in terms of biofilm biomass, colony forming units (CFU/mL) count, cell viability by live/dead analysis, and fluidity membrane changes. Concerning the hGFs, viability assays, morphological analysis (optical, scanning electronic (SEM), and confocal laser scanning (CLSM) microscopes), and assays for reactive oxygen species (ROS) and collagen production were performed. ALAD-mediated aPDT (ALAD-aPDT) treatment showed significant anti-biofilm activity against C. albicans S5, as confirmed by a reduction in both the biofilm biomass and CFUs/mL. The cell viability was strongly affected by the treatment, while on the contrary, the fluidity of the membrane remained unchanged. The results for the hGFs showed an absence of cytotoxicity and no morphological differences in cells subjected to ALAD-aPDT expected for CLSM results that exhibited an increase in the thickening of actin filaments. ROS production was augmented only at 0 h and 3 h, while the collagen appeared enhanced 7 days after the treatment.

3.
Sci Rep ; 13(1): 22067, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38086849

ABSTRACT

Novel technologies such as complex magnetic fields-CMFs represent an eco-sustainable proposal to counteract the infection associated to resistant microorganisms. The aim of this study was to evaluate the effect of two CMF programs (STRESS, ANTIBACTERIAL) against clinical antifungal resistant C. albicans also evaluating their uneffectiveness on gingival fibroblasts (hGFs). The STRESS program was more efficacious on C. albicans biofilm with up to 64.37% ± 10.80 of biomass and up to 99.19% ± 0.06 CFU/ml reductions in respect to the control also inducing an alteration of lipidic structure of the membrane. The MTT assay showed no CMFs negative effects on the viability of hGFs with a major ROS production with the ANTIBACTERIAL program at 3 and 24 h. For the wound healing assay, STRESS program showed the best effect in terms of the rate migration at 24 h, showing statistical significance of p < 0.0001. The toluidine-blue staining observations showed the typical morphology of cells and the presence of elongated and spindle-shaped with cytoplasmic extensions and lamellipodia was observed by SEM. The ANTIBACTERIAL program statistically increased the production of collagen with respect to control and STRESS program (p < 0.0001). CMFs showed a relevant anti-virulence action against C. albicans, no cytotoxicity effects and a high hGFs migration rate. The results of this study suggest that CMFs could represent a novel eco-sustainable strategy to counteract the resistant yeast biofilm infections.


Subject(s)
Antifungal Agents , Candida albicans , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fibroblasts , Biofilms , Anti-Bacterial Agents/pharmacology
4.
Materials (Basel) ; 16(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687511

ABSTRACT

Microbial adhesion on dental restorative materials may jeopardize the restorative treatment long-term outcome. The goal of this in vitro study was to assess Candida albicans capability to adhere and form a biofilm on the surface of heat-cured dental composites having different formulations but subjected to identical surface treatments and polymerization protocols. Three commercially available composites were evaluated: GrandioSO (GR), Venus Diamond (VD) and Enamel Plus HRi Biofunction (BF). Cylindrical specimens were prepared for quantitative determination of C. albicans S5 planktonic CFU count, sessile cells CFU count and biomass optical density (OD570 nm). Qualitative Concanavalin-A assays (for extracellular polymeric substances of a biofilm matrix) and Scanning Electron Microscope (SEM) analyses (for the morphology of sessile colonies) were also performed. Focusing on planktonic CFU count, a slight but not significant reduction was observed with VD as compared to GR. Regarding sessile cells CFU count and biomass OD570 nm, a significant increase was observed for VD compared to GR and BF. Concanavalin-A assays and SEM analyses confirmed the quantitative results. Different formulations of commercially available resin composites may differently interact with C. albicans. The present results showed a relatively more pronounced antiadhesive effect for BF and GR, with a reduction in sessile cells CFU count and biomass quantification.

5.
Antibiotics (Basel) ; 12(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37107037

ABSTRACT

This work aimed to evaluate and compare the antimicrobial actions and effects over time of eight types of mouthwash, based on the impact of chlorhexidine on the main microorganisms that are responsible for oral diseases: Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. The mouthwashes' antimicrobial action was determined in terms of their minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and time-kill curves at different contact times (10 s, 30 s, 60 s, 5 min, 15 min, 30 min, and 60 min), against selected oral microorganisms. All the mouthwashes showed a notable effect against C. albicans (MICs ranging from 0.02% to 0.09%), and higher MIC values were recorded with P. aeruginosa (1.56% to >50%). In general, the mouthwashes showed similar antimicrobial effects at reduced contact times (10, 30, and 60 s) against all the tested microorganisms, except with P. aeruginosa, for which the most significant effect was observed with a long time (15, 30, and 60 min). The results demonstrate significant differences in the antimicrobial actions of the tested mouthwashes, although all contained chlorhexidine and most of them also contained cetylpyridinium chloride. The relevant antimicrobial effects of all the tested mouthwashes, and those with the best higher antimicrobial action, were recorded by A-GUM® PAROEX®A and B-GUM® PAROEX®, considering their effects against the resistant microorganisms and their MIC values.

6.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982855

ABSTRACT

Helicobacter pylori colonizes human gastric mucosa, overcoming stressful conditions and entering in a dormant state. This study evaluated: (i) H. pylori's physiological changes from active to viable-but-non-culturable (VBNC) and persister (AP) states, establishing times/conditions; (ii) the ability of vitamin C to interfere with dormancy generation/resuscitation. A dormant state was induced in clinical MDR H. pylori 10A/13 by: nutrient starvation (for VBNC generation), incubating in an unenriched medium (Brucella broth) or saline solution (SS), and (for AP generation) treatment with 10xMIC amoxicillin (AMX). The samples were monitored after 24, 48, and 72 h, 8-14 days by OD600, CFUs/mL, Live/Dead staining, and an MTT viability test. Afterwards, vitamin C was added to the H. pylori suspension before/after the generation of dormant states, and monitoring took place at 24, 48, and 72 h. The VBNC state was generated after 8 days in SS, and the AP state in AMX for 48 h. Vitamin C reduced its entry into a VBNC state. In AP cells, Vitamin C delayed entry, decreasing viable coccal cells and increasing bacillary/U-shaped bacteria. Vitamin C increased resuscitation (60%) in the VBNC state and reduced the aggregates of the AP state. Vitamin C reduced the incidence of dormant states, promoting the resuscitation rate. Pretreatment with Vitamin C could favor the selection of microbial vegetative forms that are more susceptible to H. pylori therapeutical schemes.


Subject(s)
Helicobacter pylori , Humans , Ascorbic Acid/pharmacology , Gastric Mucosa , Saline Solution , Microbial Viability
7.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674518

ABSTRACT

Chronic wounds have harmful effects on both patients and healthcare systems. Wound chronicity is attributed to an impaired healing process due to several host and local factors that affect healing pathways. The resulting ulcers contain a wide variety of microorganisms that are mostly resistant to antimicrobials and possess the ability to form mono/poly-microbial biofilms. The search for new, effective and safe compounds to handle chronic wounds has come a long way throughout the history of medicine, which has included several studies and trials of conventional treatments. Treatments focus on fighting the microbial colonization that develops in the wound by multidrug resistant pathogens. The development of molecular medicine, especially in antibacterial agents, needs an in vitro model similar to the in vivo chronic wound environment to evaluate the efficacy of antimicrobial agents. The Lubbock chronic wound biofilm (LCWB) model is an in vitro model developed to mimic the pathogen colonization and the biofilm formation of a real chronic wound, and it is suitable to screen the antibacterial activity of innovative compounds. In this review, we focused on the characteristics of chronic wound biofilms and the contribution of the LCWB model both to the study of wound poly-microbial biofilms and as a model for novel treatment strategies.


Subject(s)
Anti-Infective Agents , Wound Infection , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Persistent Infection , Wound Infection/drug therapy , Wound Infection/microbiology , Biofilms , Pseudomonas aeruginosa
8.
Antibiotics (Basel) ; 11(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35884086

ABSTRACT

Multidrug-resistant organisms (MDRO) are bacteria that exhibit acquired resistance to multiple antibiotics, reducing the efficacy of antimicrobial therapies [...].

9.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805944

ABSTRACT

Innovative non-antibiotic compounds such as graphene oxide (GO) and light-emitting diodes (LEDs) may represent a valid strategy for managing chronic wound infections related to resistant pathogens. This study aimed to evaluate 630 nm LED and 880 nm LED ability to enhance the GO antimicrobial activity against Staphylococcus aureus- and Pseudomonas aeruginosa-resistant strains in a dual-species biofilm in the Lubbock chronic wound biofilm (LCWB) model. The effect of a 630 nm LED, alone or plus 5-aminolevulinic acid (ALAD)-mediated photodynamic therapy (PDT) (ALAD-PDT), or an 880 nm LED on the GO (50 mg/l) action was evaluated by determining the CFU/mg reductions, live/dead analysis, scanning electron microscope observation, and reactive oxygen species assay. Among the LCWBs, the best effect was obtained with GO irradiated with ALAD-PDT, with percentages of CFU/mg reduction up to 78.96% ± 0.21 and 95.17% ± 2.56 for S. aureus and P. aeruginosa, respectively. The microscope images showed a reduction in the cell number and viability when treated with GO + ALAD-PDT. In addition, increased ROS production was detected. No differences were recorded when GO was irradiated with an 880 nm LED versus GO alone. The obtained results suggest that treatment with GO irradiated with ALAD-PDT represents a valid, sustainable strategy to counteract the polymicrobial colonization of chronic wounds.


Subject(s)
Photochemotherapy , Staphylococcus aureus , Aminolevulinic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Graphite , Photochemotherapy/methods , Pseudomonas aeruginosa
10.
Front Microbiol ; 13: 832919, 2022.
Article in English | MEDLINE | ID: mdl-35479636

ABSTRACT

Resistant wound microorganisms are becoming an extremely serious challenge in the process of treating infected chronic wounds, leading to impaired healing. Thus, additional approaches should be taken into consideration to improve the healing process. The use of natural extracts can represent a valid alternative to treat/control the microbial infections in wounds. This study investigates the antimicrobial/antivirulence effects of Capparis spinose aqueous extract against the main chronic wound pathogens: Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The extract shows phenolic characterization with rutin (1.8 ± 0.14 µg/mg) as the major compound and antibacterial effect against bacteria (S. aureus PECHA 10 MIC 6.25%; P. aeruginosa PECHA 4 MIC 12.50%) without action against C. albicans (MIC and MFC ≥ 50%). Capparis spinose also shows a significant antivirulence effect in terms of antimotility/antibiofilm actions. In particular, the extract acts (i) on P. aeruginosa both increasing its swimming and swarming motility favoring the planktonic phenotype and reducing its adhesive capability, (ii) on S. aureus and P. aeruginosa biofilm formation reducing both the biomass and CFU/ml. Furthermore, the extract significantly displays the reduction of a dual-species S. aureus and P. aeruginosa Lubbock chronic wound biofilm, a complex model that mimics the realistic in vivo microbial spatial distribution in wounds. The results suggest that C. spinose aqueous extract could represent an innovative eco-friendly strategy to prevent/control the wound microbial infection.

11.
Article in English | MEDLINE | ID: mdl-35270740

ABSTRACT

AIM OF THE STUDY: The aim was to evaluate the effects of two LED devices, TL-01 and TL-03 in photodynamic therapy (PDT), on Enterococcus faecalis and on human gingival fibroblasts (HGFs). TL-01, characterized by a single emitter, irradiates one periodontal site at a time, whereas the multi-led device (TL-03) irradiates all vestibular sites of a single arch at a time. METHODS: E. faecalis bacterial suspensions and HGFs were incubated for 45 min with Aladent gel (ALAD) containing 5-aminolevulinic acid and then exposed to LED devices (ALAD-PDT), having different distance and timing of irradiation (TL-01 N (0.5 mm, for 7 min), TL-03 N (0.5 mm, 15 min) and TL-03 F (30.0 mm, 15 min)). For bacterial suspension, the colony forming units and the live/dead staining were evaluated after 24 h, while the protoporphyrin IX (PpIX) content was monitored in all phases of the experimentation. For HGFs, the cell viability, proliferation, cell morphology, and adhesion were evaluated at 24 h. RESULTS: Both TL-01 and TL-03 showed a significant reduction of bacterial load. The photoinactivation was inversely proportional to the PpIX accumulation. TL-01 and TL-03 promoted proliferation and adhesion of HGFs. CONCLUSIONS: Both tested devices for ALAD-PDT were equally effective in significantly reducing Enterococcus faecalis growth and in promoting HGFs proliferation and adhesion, in vitro.


Subject(s)
Photochemotherapy , Enterococcus faecalis , Fibroblasts , Gingiva , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
12.
Materials (Basel) ; 15(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35269121

ABSTRACT

Antibacterial and antibiofilm properties of restorative dental materials may improve restorative treatment outcomes. The aim of this in vitro study was to evaluate Streptococcus mutans capability to adhere and form biofilm on the surface of three commercially available composite resins (CRs) with different chemical compositions: GrandioSO (VOCO), Venus Diamond (VD), and Clearfil Majesty (ES-2). Disk-shaped specimens were manufactured by light-curing the CRs through two glass slides to maintain a perfectly standardized surface topography. Specimens were subjected to Planktonic OD600nm, Planktonic CFU count, Planktonic MTT, Planktonic live/dead, Adherent Bacteria CFU count, Biomass Quantification OD570nm, Adherent Bacteria MTT, Concanavalin A, and Scanning Electron Microscope analysis. In presence of VOCO, VD, and ES2, both Planktonic CFU count and Planktonic OD600nm were significantly reduced compared to that of control. The amount of Adherent CFUs, biofilm Biomass, metabolic activity, and extracellular polymeric substances were significantly reduced in VOCO, compared to those of ES2 and VD. Results demonstrated that in presence of the same surface properties, chemical composition might significantly influence the in vitro bacterial adhesion/proliferation on resin composites. Additional studies seem necessary to confirm the present results.

13.
Biomedicines ; 10(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35327374

ABSTRACT

The use of a new gel containing aminolevulinic acid and red light (ALAD-PDI) was tested in order to counteract bacterial biofilm growth on different titanium implant surfaces. The varying antibacterial efficacy of ALAD-PDI against biofilm growth on several titanium surfaces was also evaluated. A total of 60 titanium discs (30 machined and 30 double-acid etched, DAE) were pre-incubated with saliva and then incubated for 24 h with Streptococcus oralis to form bacterial biofilm. Four different groups were distinguished: two exposed groups (MACHINED and DAE discs), covered with S. oralis biofilm and subjected to ALAD + PDI, and two unexposed groups, with the same surfaces and bacteria, but without the ALAD + PDI (positive controls). Negative controls were non-inoculated discs alone and combined with the gel (ALAD) without the broth cultures. After a further 24 h of anaerobic incubation, all groups were evaluated for colony-forming units (CFUs) and biofilm biomass, imaged via scanning electron microscope, and tested for cell viability via LIVE/DEAD analysis. CFUs and biofilm biomass had significantly higher presence on unexposed samples. ALAD-PDI significantly decreased the number of bacterial CFUs on both exposed surfaces, but without any statistically significant differences among them. Live/dead staining showed the presence of 100% red dead cells on both exposed samples, unlike in unexposed groups. Treatment with ALAD + red light is an effective protocol to counteract the S. oralis biofilm deposited on titanium surfaces with different tomography.

14.
Biomedicines ; 9(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34572449

ABSTRACT

This study evaluates the effects of different programs of complex electromagnetic fields (C.M.F.s) on Candida albicans, in planktonic and sessile phase and on human gingival fibroblasts (HGF cells). In vitro cultures of C. albicans ATCC 10231 and HGF cells were exposed to different cycles of C.M.F.s defined as: oxidative stress, oxidative stress/antibacterial, antibacterial, antibacterial/oxidative stress. Colony forming units (CFUs), metabolic activity, cells viability (live/dead), cell morphology, filamentation analysis, and cytotoxicity assay were performed. The broth cultures, exposed to the different C.M.F.s, were grown on titanium discs for 48 h. The quantity comparisons of adhered C. albicans on surfaces were determined by CFUs and scanning electron microscopy. The C. albicans growth could be readily controlled with C.M.F.s reducing the number of cultivable planktonic cells vs. controls, independently by the treatment applied. In particular, the antibacterial program was associated with lower levels of CFUs. The quantification of the metabolic activity was significantly lower by using the oxidative stress program. Live/dead images showed that C.M.F.s significantly decreased the viability of C. albicans. C.M.F.s inhibited C. albicans virulence traits reducing hyphal morphogenesis, adhesion, and biofilm formation on titanium discs. The MTS assay showed no negative effects on the viability of HGF. Independent of the adopted protocol, C.M.F.s exert antifungal and anti-virulence action against C. albicans, no cytotoxicity effects on HGF and can be useful in the prevention and treatment of yeast biofilm infections.

15.
Microorganisms ; 9(8)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34442858

ABSTRACT

Chronic wound infections represent an important health problem due to the reduced response to antimicrobial treatment of the pathogens organized in structured biofilms. This study investigated the effects of the previously described antifungal peptide L18R against three representative wound pathogens: Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The antimicrobial activity of L18R was evaluated (i) against single planktonic microbial populations; (ii) on single, dual, and triadic species of biofilms in both the early stage and mature stage; and (iii) in the polymicrobial Lubbock chronic wound biofilm (LCWB) model, mimicking spatial microbial colonization. This study used the evaluation of CFUs, biofilm biomass detection, and confocal and scanning electron microscopy analysis. L18R showed a significant antimicrobial activity against planktonic microorganisms and was able to differentially reduce the biomass of monomicrobial biofilms. No reduction of biomass was observed against the polymicrobial biofilm. In mature LCWB, L18R caused a moderate reduction in total CFU number, with a variable effect on the different microorganisms. Microscopy images confirmed a predominant presence of P.aeruginosa and a lower percentage of C. albicans cells. These findings suggest a modulating action of L18R and recommend further studies on its potential role in chronic wound management in association with conventional antibiotics or alternative treatments.

16.
Antibiotics (Basel) ; 9(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33322025

ABSTRACT

The drug-resistance phenomenon in Helicobacter pylori underlines the need of novel strategies to improve the eradication rate including alternative treatments combining antibiotic and non-antibiotic compounds with synergistic action. In this study, the antibacterial (MIC/MBC) and anti-virulence effects (biofilm reduction and swarming motility inhibition) of resveratrol-RSV and new synthetized RSV-phenol derivatives, with a higher bioavailability, alone and combined with levofloxacin-LVX were evaluated against resistant H. pylori clinical strains. The experiments were confirmed in vivo using the Galleria mellonella model. Among the studied RSV derivatives, RSV-3 and RSV-4 possessed higher antibacterial activity with respect to RSV (MICs from 6.25 to 200 µg/mL and from 3.12 to 200 µg/mL, respectively). RSV, RSV-3, and RSV-4 were able to synergize with LVX restoring its effect in two out of seven clinical resistant strains tested for the study. RSV, RSV-3, and RSV-4, alone and with LVX at sub-MIC and sub-synergistic concentrations, significantly reduced the biofilm formation. Moreover, RSV-3 and RSV-4 reduced the H. pylori swarming motility on soft agar. RSV, RSV-3, and RSV-4 were non-toxic for G. mellonella larvae and displayed a protective effect against H. pylori infection. Overall, RSV-phenol derivatives should be considered interesting candidates for innovative therapeutic schemes to tackle the H. pylori antibiotic resistance.

17.
Microorganisms ; 9(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374268

ABSTRACT

BACKGROUND: An unbalanced skin microbiota due to an increase in pathogenic vs. commensal bacteria can be efficiently tackled by using prebiotics. The aim of this work was to identify novel prebiotic combinations by exerting species-specific action between S. aureus and S. epidermidis strains. METHODS: First, the antimicrobial/antibiofilm effect of Xylitol-XYL and Galacto-OligoSaccharides-GOS combined with each other at different concentrations (1, 2.5, 5%) against S. aureus and S. epidermidis clinical strains was evaluated in time. Second, the most species-specific concentration was used to combine XYL with Fructo-OligoSaccharides-FOS, IsoMalto-Oligosaccharides-IMO, ArabinoGaLactan-LAG, inulin, dextran. Experiments were performed by OD600 detection, biomass quantification and LIVE/DEAD staining. RESULTS: 1% XYL + 1% GOS showed the best species-specific action with an immediate antibacterial/antibiofilm action against S. aureus strains (up to 34.54% ± 5.35/64.68% ± 4.77) without a relevant effect on S. epidermidis. Among the other prebiotic formulations, 1% XYL plus 1% FOS (up to 49.17% ± 21.46/37.59% ± 6.34) or 1% IMO (up to 41.28% ± 4.88/36.70% ± 10.03) or 1% LAG (up to 38.21% ± 5.31/83.06% ± 5.11) showed antimicrobial/antibiofilm effects similar to 1% XYL+1% GOS. For all tested formulations, a prevalent bacteriostatic effect in the planktonic phase and a general reduction of S. aureus biofilm formation without loss of viability were recorded. CONCLUSION: The combinations of 1% XYL with 1% GOS or 1% FOS or 1% IMO or 1% LAG may help to control the balance of skin microbiota, representing good candidates for topic formulations.

18.
Int J Mol Sci ; 21(21)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167597

ABSTRACT

This work aimed to compare the capability of Streptococcus oralis to adhere to a novel surface, double-etched titanium (DAE), in respect to machined and single-etched titanium. The secondary outcome was to establish which topographical features could affect the interaction between the implant surface and bacteria. The samples' superficial features were characterized using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS), and the wetting properties were tested through sessile methods. The novel surface, the double-etched titanium (DAE), was also analyzed with atomic force microscopy (AFM). S. oralis was inoculated on discs previously incubated in saliva, and then the colony-forming units (CFUs), biomass, and cellular viability were measured at 24 and 48h. SEM observation showed that DAE was characterized by higher porosity and Oxygen (%) in the superficial layer and the measurement of the wetting properties showed higher hydrophilicity. AFM confirmed the presence of a higher superficial nano-roughness. Microbiological analysis showed that DAE discs, coated by pellicle's proteins, were characterized by significantly lower CFUs at 24 and 48 h with respect to the other two groups. In particular, a significant inverse relationship was shown between the CFUs at 48 h and the values of the wetted area and a direct correlation with the water contact angle. The biomass at 24 h was slightly lower on DAE, but results were not significant concerning the other groups, both at 24 and 48 h. The DAE treatment not only modifies the superficial topography and increased hydrophilicity, but it also increases the Oxygen percentage in the superficial layer, which could contribute to the inhibition of S. oralis adhesion. DAE can be considered a promising treatment for titanium implants to counteract a colonization pioneer microorganism, such as S. oralis.


Subject(s)
Bacterial Adhesion/drug effects , Dental Implants/microbiology , Streptococcus oralis/metabolism , Titanium/chemistry , Adhesives/metabolism , Bacteria/metabolism , Bacterial Adhesion/physiology , Biofilms/drug effects , Coated Materials, Biocompatible/chemistry , Dental Implants/trends , Humans , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning/methods , Spectrometry, X-Ray Emission/methods , Streptococcus oralis/pathogenicity , Surface Properties/drug effects
19.
Sci Rep ; 10(1): 18525, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33116164

ABSTRACT

Chronic wound management becomes a complex procedure because of the persistence of forming biofilm pathogens that do not respond to antimicrobial treatment. The aim of this paper is to detect the Graphene Oxide-GO effect on Staphylococcus aureus and Pseudomonas aeruginosa dual species wound biofilm in Lubbock Chronic Wound Biofilm-LCWB model. LCWB is a recognized model that mimics the spatial microbial colonization into chronic wounds and reproduces the wound and its clot. Staphylococcus aureus PECHA 10 and P. aeruginosa PECHA 4, are the pathogens used in the study. The GO effect on both in forming and mature biofilms, is detected by the evaluation of the CFU/mg reduction, the cell viability and ultrastructural analysis of the treated LCWBs. Graphene Oxide, at 50 mg/l, shows a significant antibiofilm effect in forming and mature LCWBs. In particular, during the biofilm formation, GO reduces the S. aureus and P. aeruginosa growth of 55.05% ± 4.73 and 44.18% ± 3.91 compared to the control. In mature biofilm, GO affects S. aureus and P. aeruginosa by reducing their growth of 70.24% ± 4.47 and 63.68% ± 17.56, respectively. Images taken by SEM show that GO display a disaggregated microbial effect also disrupting the fibrin network of the wound-like biofilm framework. In conclusion, GO used against microorganisms grown in LCWB, displays a significant inhibitory action resulting in a promising tool for potential application in wound management.


Subject(s)
Biofilms/drug effects , Graphite/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Graphite/metabolism , Microbial Sensitivity Tests , Models, Biological , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Wound Healing/physiology
20.
J Mater Sci Mater Med ; 31(10): 84, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32989624

ABSTRACT

The aim of this study was to evaluate the interaction between Streptococcus oralis and Polyetheretherketone (PEEK), a novel material recently introduced in implantology. The topographical characterization and the Streptococcus oralis adhesion on this material were compared with other titanium surfaces, currently used for the production of dental implants: machined and double etched (DAE). The superficial micro-roughness of the PEEK discs was analyzed by scanning electron microscopy (SEM) and, the Energy Dispersive Spectrometer (EDS) analyzed their chemical composition. Atomic Force Microscopy (AFM) was used to characterize the micro-topography and the sessile method to evaluate the wettability of the samples. Microbiological analysis measured the colony forming units (CFUs), the biomass (OD570 detection) and the cell viability after 24 and 48 h after Streptococcus oralis cultivation on the different discs, that were previously incubated with saliva. Results showed that PEEK was characterized by a micro-roughness that was similar to machined titanium but at nano-level the nano-roughness was significantly higher in respect to the other samples. The EDS showed that PEEK superficial composition was characterized mainly by Carbonium and Oxygen. The hydrophilicity and wetting properties of PEEK were similar to machined titanium; on the contrary, double etched discs (DAE) samples were characterized by significantly higher levels (p < 0.05). PEEK was characterized by significant lower CFUs, biomass and viable cells in respect to the titanium surfaces. No differences were found between machined and DAE. The anti-adhesive and antibacterial properties showed by PEEK at 24 and 48 h against a pioneer such as S. oralis, could have an important role in the prevention of all pathologies connected with biofilm formation, like peri-implantitis in dentistry or prosthetic failures in orthopedics.


Subject(s)
Benzophenones/chemistry , Dental Implants , Polymers/chemistry , Prosthesis Design , Streptococcus oralis/metabolism , Titanium/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion , Biomass , Carbon/chemistry , Cell Survival , Female , Humans , Hydrophobic and Hydrophilic Interactions , Male , Materials Testing , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Oxygen/chemistry , Prosthesis Failure , Saliva/microbiology , Stem Cells , Surface Properties , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...