Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cryst Growth Des ; 24(1): 79-92, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38188268

ABSTRACT

The sorption of heavy metals on mineral surfaces plays a key role in controlling the fate and bioavailability of harmful elements through dissolution-precipitation reactions. Here, we investigate the efficiency of Pb removal from highly contaminated waters by two calcium carbonate hard tissues, scallop shells (up to 99.9 mol %; -biocalcite) and cuttlefish bones (up to 90.0 mol %; bioaragonite), which template the precipitation of the highly insoluble mineral cerussite (PbCO3). The experiments show that both biomaterials are about five times more effective Pb scavengers (5 mmol of cerussite precipitated/g sample) than their inorganic counterparts (∼1 mmol/g). We relate this enhanced Pb scavenging capacity of biocarbonates to their composite organic-inorganic nature, which modulates their specific nano- and microstructural features and defines their larger surface areas, solubility, and reactivity compared to those of their inorganic counterparts. The oriented growth of cerussite progressively passivates the bioaragonite surface, reducing its long-term Pb scavenging capacity. In contrast, the randomly oriented growth of cerussite crystals on biocalcite prevents surface passivation and explains why biocalcite outperforms bioaragonite as a long-term Pb scavenger. The use of biocarbonates could be a key for designing more efficient decontamination strategies for heavy metal-polluted waters.

2.
ACS Biomater Sci Eng ; 7(6): 2346-2357, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33973778

ABSTRACT

Mineralization of hydroxylapatite (HAp), the main inorganic phase in bone, follows nonclassical crystallization routes involving metastable precursors and is strongly influenced by organic macromolecules. However, the effect of small organic molecules such as citrate on the formation of HAp is not well constrained. Using potentiometric titration experiments and titration calorimetry, in combination with a multianalytical approach, we show that citrate stabilizes prenucleation species as well as a liquid-like calcium phosphate precursor formed before any solid phase nucleates in the system. The stabilization of a liquid-like precursor phase could facilitate infiltration into the cavities of the collagen fibrils during bone mineralization, explaining the enhancement of collagen-mediated mineralization by citrate reported in previous studies. Hence, citrate can influence bone mineralization way before any solid phase (amorphous or crystalline) is formed. We also show that HAp formation after amorphous calcium phosphate (ACP) in the absence and presence of citrate results in nanoplates of about 5-12 nm thick, elongated along the c axis. Such nanoplates are made up of HAp nanocrystallites with a preferred c axis orientation and with interspersed ACP. The nanoplatelet morphology, size, and preferred crystallographic orientation, remarkably similar to those of bone HAp nanocrystals, appear to be an intrinsic feature of HAp formed from an amorphous precursor. Our results challenge current models for HAp mineralization in bone and the role of citrate, offering new clues to help answer the long-standing question as to why natural evolution favored HAp as the mineral phase in bone.


Subject(s)
Calcification, Physiologic , Durapatite , Citric Acid , Collagen , Crystallization
SELECTION OF CITATIONS
SEARCH DETAIL
...