Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38474760

ABSTRACT

The prevalence of chronic kidney disease (CKD) is rising, especially in elderly individuals. The overlap between CKD and aging is associated with body composition modification, metabolic abnormalities, and malnutrition. Renal care guidelines suggest treating CKD patient with a low-protein diet according to the renal disease stage. On the other hand, geriatric care guidelines underline the need for a higher protein intake to prevent malnutrition. The challenge remains of how to reconcile a low dietary protein intake with insuring a favorable nutritional status in geriatric CKD populations. Therefore, this study aims to evaluate the effect of a low-protein adequate energy intake (LPAE) diet on nutritional risk and nutritional status among elderly CKD (stage 3-5) patients and then to assess its impact on CKD metabolic abnormalities. To this purpose, 42 subjects [age ≥ 65, CKD stage 3-5 in conservative therapy, and Geriatric Nutritional Risk Index (GNRI) ≥ 98] were recruited and the LPAE diet was prescribed. At baseline and after 6 months of the LPAE diet, the following data were collected: age, sex, biochemical parameters, anthropometric measurements, body composition, and the GNRI. According to their dietary compliance, the subjects were divided into groups: compliant and non-compliant. For the compliant group, the results obtained show no increased malnutrition risk incidence but, rather, an improvement in body composition and metabolic parameters, suggesting that the LPAE diet can provide a safe tool in geriatric CKD patients.


Subject(s)
Malnutrition , Renal Insufficiency, Chronic , Humans , Aged , Nutritional Status , Dietary Proteins , Renal Insufficiency, Chronic/complications , Malnutrition/complications , Diet, Protein-Restricted , Nutrition Assessment , Geriatric Assessment/methods
2.
Curr Obes Rep ; 13(1): 51-70, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38172476

ABSTRACT

PURPOSE OF REVIEW: The goal of the present review is to address the main adiposity-related alterations in Polycystic Ovary Syndrome (PCOS) focusing on hypothalamic-pituitary-ovarian (H-P-O) axis and to provide an overview of nutraceutical and pharmacological therapeutic strategies. RECENT FINDINGS: Female reproduction is a complex and delicate interplay between neuroendocrine signals involving the H-P-O axis. Elements that disrupt the balance of these interactions can lead to metabolic and reproductive disorders, such as PCOS. This disorder includes menstrual, metabolic, and biochemical abnormalities as well as hyperandrogenism, oligo-anovulatory menstrual cycles, insulin resistance, and hyperleptinemia which share an inflammatory state with other chronic diseases. Moreover, as in a self-feeding cycle, high androgen levels in PCOS lead to visceral fat deposition, resulting in insulin resistance and hyperinsulinemia, further stimulating ovarian and adrenal androgen production. In fact, regardless of age and BMI, women with PCOS have more adipose tissue and less lean mass than healthy women. Excessive adiposity, especially visceral adiposity, is capable of affecting female reproduction through direct mechanisms compromising the luteal phase, and indirect mechanisms as metabolic alterations able to affect the function of the H-P-O axis. The intricate crosstalk between adiposity, inflammatory status and H-P-O axis function contributes to the main adiposity-related alterations in PCOS, and alongside currently available hormonal treatments, nutraceutical and pharmacological therapeutic strategies can be exploited to treat these alterations, in order to enable a more comprehensive synergistic and tailored treatment.


Subject(s)
Hyperandrogenism , Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/therapy , Adiposity , Androgens , Obesity/therapy , Obesity/metabolism
3.
Infez Med ; 30(3): 440-445, 2022.
Article in English | MEDLINE | ID: mdl-36148167

ABSTRACT

Background: A gold-standard for the measurement of adherence to antiretroviral therapy (ART) is lacking. Aim of this study is to verify the feasibility of a package-refill-based measurement of ART at "D. Cotugno" hospital, Naples, Italy, and the factors associated to adherence. Methods: In the period January 2018-August 2020, we calculated the package-refill as the ratio between ART-packages actually withdrawn, and the ART packages needed to regularly take ART. Adherence was associated, trough a univariate e multivariate logistic regression, to demographical, behavioural and clinical factors. Results: 1140 HIV+ subjects were included. At univariate logistic regression inadequate package-refill-based adherence is associated with HIV-RNA higher than 50 copies/mmL (OR 3.77-IC95% 2.76-5.13) and with HIVRNA higher than 200 copies/mmL (OR 3.98-IC95% 2.69-5.90). Being not-Italian and Injective-drug-user are associated with low adherence, having HIV/AIDS for more than 8 years is associated with better adherence. Conclusions: Package-refill is a suitable method for measuring adherence and is associated with the condition of viral failure.

4.
Animals (Basel) ; 12(14)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35883315

ABSTRACT

Pollution is one of the main causes of the loss of biodiversity, currently one of the most important environmental problems. Important sources of aquatic pollution are illicit drugs, whose presence in waters is closely related to human consumption; their psychoactive properties and biological activity suggest potential adverse effects on non-target organisms, such as aquatic biota. In this study, we evaluated the effect of an environmentally relevant concentration of cocaine (20 ng L−1), an illicit drug widely found in surface waters, on the ovaries of Anguilla anguilla, a species critically endangered and able to accumulate cocaine in its tissues following chronic exposure. The following parameters were evaluated: (1) the morphology of the ovaries; (2) the presence and distribution of enzymes involved in oogenesis; (3) serum cortisol, FSH, and LH levels. The eels exposed to cocaine showed a smaller follicular area and a higher percentage of connective tissue than controls (p < 0.05), as well as many previtellogenic oocytes compared with controls having numerous fully vitellogenic and early vitellogenic oocytes. In addition, the presence and location of 3ß-hydroxysteroid dehydrogenase, 17ß-hydroxysteroid dehydrogenase, and P450 aromatase differed in the two groups. Finally, cocaine exposure decreased FSH and LH levels, while it increased cortisol levels. These findings show that even a low environmental concentration of cocaine affects the ovarian morphology and activity of A. anguilla, suggesting a potential impact on reproduction in this species.

5.
Neurotoxicol Teratol ; 92: 107094, 2022.
Article in English | MEDLINE | ID: mdl-35513163

ABSTRACT

Excessive fat and sugar intake represents a risk towards the development of different pathologies, such as obesity, diabetes, sociability and memory deficits. Although the adolescence stage is a susceptible period for these and other risks, effects of energy-dense nutrients in such an age period have not been fully investigated. In the present study, neurobehavioral alterations following a 4-week exposure to either normal diet (ND) or high-fat diet (HFD) plus normal water (NW) or liquid sugar (LS) were evaluated in young hamsters. HFD + LS and ND + LS significantly reduced food intake and water consumption, which was, in the latter group, almost completely substituted by LS. All obesogenic diets accounted for increased abdominal fat and liver weight with respect to body weight (p < 0.05-0.001). Additionally, glucose levels notably increased (p < 0.0001) together with insulin and triglycerides in HFD + LS (p < 0.001) and ND + LS (p < 0.01) while cholesterol displayed only a moderate increase (p < 0.05) in HFD + NW and HFD + LS. Animals fed with HFD and/or LS exhibited impaired social memory plus increased winning percentages (0.05 < p < 0.01) during the tube test. Interestingly, these same treatments led to a down-regulation of phosphorylated cAMP Response-Element Binding Protein (pCREB) in HFD + NW (p < 0.0001) for all areas, but rather was upregulated (p < 0.05) in ND + LS of the amygdala. Overall, in view of a brief exposure to palatable foods interfering with normal metabolic and social memory activities, the downregulation of pCREB constitutes a key indicator of neurobehavioral deficits during obesogenic diets. Compensatory mechanisms may be also occurring in the amygdala that strongly regulates emotional states via connections with other limbic areas.


Subject(s)
Diet, High-Fat , Dietary Sugars , Social Behavior , Abdominal Fat , Aggression , Animals , Behavior, Animal , Body Weight , Cerebral Cortex/physiopathology , Cricetinae , Cyclic AMP Response Element-Binding Protein/metabolism , Diet, High-Fat/adverse effects , Dietary Sugars/adverse effects , Liver , Male , Memory Disorders , Organ Size
6.
Animals (Basel) ; 11(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918463

ABSTRACT

BACKGROUND: Nonylphenol (NP) and Octylphenol (OP) are persistent and non-biodegradable environmental contaminants classified as endocrine disruptor chemicals (EDCs). These compounds are widely used in several industrial applications and present estrogen-like properties, which have extensively been studied in aquatic organisms. The present study aimed to verify the interference of these compounds alone, and in mixture, on the reproductive cycle of the male terrestrial vertebrate Podarcis siculus, focusing mainly on the steroidogenesis process. METHODS: Male lizards have been treated with different injections of both NP and OP alone and in mixture, and evaluation has been carried out using a histological approach. RESULTS: Results obtained showed that both substances are able to alter both testis histology and localization of key steroidogenic enzymes, such as 3ß-hydroxysteroid dehydrogenase (3ß-HSD), 17ß- hydroxysteroid dehydrogenase (17ß-HSD) and P450 aromatase. Moreover, OP exerts a preponderant effect, and the P450 aromatase represents the major target of both chemicals. CONCLUSIONS: In conclusion, NP and OP inhibit steroidogenesis, which in turn may reduce the reproductive capacity of the specimens.

7.
Arch Environ Contam Toxicol ; 80(3): 567-578, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33687533

ABSTRACT

Different environmental contaminants disturb the thyroid system at many levels. AlkylPhenols (APs), by-products of microbial degradation of AlkylPhenol Polyethoxylates (APEOs), constitute an important class of Endocrine Disrupting Chemicals (EDCs), the two most often used environmental APs being 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-t-OP). The purpose of the present study was to investigate the effects on the thyroid gland of the bioindicator Podarcis siculus of OP alone and in combination with NP. We used radioimmunoassay to determine their effects on plasma 3,3',5-triiodo-L-thyronine (T3), 3,3',5,5'-L-thyroxine (T4), thyroid-stimulating hormone (TSH), and thyrotropin-releasing hormone (TRH) levels in adult male lizards. We also investigated the impacts of AP treatments on hepatic 5'ORD (type II) deiodinase and hepatic content of T3 and T4. After OP and OP + NP administration, TRH levels increased, whereas TSH, T3, and T4 levels decreased. Lizards treated with OP and OP + NP had a higher concentration of T3 in the liver and 5'ORD (type II) activity, whereas T4 concentrations were lower than that observed in the control group. Moreover, histological examination showed that the volume of the thyroid follicles became smaller in treated lizards suggesting that that thyroid follicular epithelial cells were not functionally active following treatment. This data collectively suggest a severe interference with hypothalamus-pituitary-thyroid axis and a systemic imbalance of thyroid hormones.


Subject(s)
Lizards , Thyroid Gland , Animals , Male , Phenols , Triiodothyronine
8.
Chemosphere ; 268: 129282, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33360142

ABSTRACT

Antarctica has long been considered a continent free from anthropic interference. Unfortunately, recent evidence indicate that metal contamination has gone so far and that its effects are still unknown. For this reason, in the present work, the potential endocrine disrupting effect of two highly polluting metals, copper and cadmium, were examined in the Antarctic teleost Trematomus bernacchii. After a 10 days waterborne exposure, ovarian metal uptake was determined by atomic absorption; in parallel, classical histological approaches were adopted to determine the effects on oocyte morphology, carbohydrate composition and presence and localization of progesterone and estrogen receptors. Results show that both metals induce oocyte degeneration in about one third of the previtellogenic oocytes, no matter the stage of development. In apparently healthy oocytes, changes in cytoplasm, cortical alveoli and/or chorion carbohydrates composition are observed. Cadmium but not copper also induces significant changes in the localization of progesterone and beta-estrogen receptors, a result that well correlates with the observed increase in ovarian metals concentrations. In conclusion, the acute modifications detected are suggestive of a significantly impaired fecundity and of a marked endocrine disrupting effects of copper and cadmium in this teleost species.


Subject(s)
Cadmium , Perciformes , Animals , Antarctic Regions , Cadmium/toxicity , Copper/toxicity , Oocytes
9.
Ecotoxicol Environ Saf ; 208: 111475, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33068975

ABSTRACT

Cocaine is one of the most widely used illicit drugs in the world, and as a result of incomplete removal by sewage treatment plants it is found in surface waters, where it represents a new potential risk for aquatic organisms. In this study we evaluated the influence of environmental concentrations of cocaine on the liver and the kidney of the European eel (Anguilla anguilla). The eels were exposed to 20 ng L-1 of cocaine for fifty days, after which, three and ten days after the interruption of cocaine exposure their livers and kidneys were compared to controls. The general morphology of the two organs was evaluated, as well as the following parameters: cytochrome oxidase (COX) and caspase-3 activities, as markers of oxidative metabolism and apoptosis activation, respectively; glucose-regulated protein (GRP)78 levels, as a marker of endoplasmic reticulum (ER)-stress; blood glucose level, as stress marker; serum levels of alanine aminotransferase (ALT), as a marker of liver injury and serum levels of C-reactive protein (CRP), as a marker of the inflammatory process. The liver showed morphologic alterations such as necrotic areas, karyolysis and pyknotic nuclei, while the kidneys had dilated glomeruli and the renal tubules showed pyknotic nuclei and karyolysis. In the kidney, the alterations persisted after the interruption of cocaine exposure. In the liver, COX and caspase-3 activities increased (COX: P = 0.01; caspase-3: P = 0.032); ten days after the interruption of cocaine exposure, COX activity returned to control levels (P = 0.06) whereas caspase-3 activity decreased further (P = 0.012); GRP78 expression increased only in post-exposure recovery specimens (three days: P = 0.007 and ten days: P = 0.008 after the interruption of cocaine exposure, respectively). In the kidney, COX and caspase-3 activities increased (COX: P = 0.02; caspase-3: P = 0.019); after the interruption of cocaine exposure, COX activity remained high (three days: P = 0.02 and ten days: P = 0.029 after the interruption of cocaine exposure, respectively) whereas caspase-3 activity returned to control values (three days: P = 0.69 and ten days: P = 0.67 after the interruption of cocaine exposure, respectively). Blood glucose and serum ALT and CRP levels increased (blood glucose: P = 0.01; ALT: P = 0.001; CRP: 0.015) and remained high also ten days after the interruption of cocaine exposure (blood glucose: P = 0.009; ALT: P = 0.0031; CRP: 0.036). These results suggest that environmental cocaine concentrations adversely affected liver and kidney of this species.


Subject(s)
Anguilla/physiology , Cocaine/toxicity , Water Pollutants, Chemical/toxicity , Alanine Transaminase/metabolism , Anguilla/blood , Animals , Blood Glucose , C-Reactive Protein/metabolism , Caspase 3/metabolism , Cocaine/analysis , Electron Transport Complex IV/metabolism , Illicit Drugs , Kidney/metabolism , Liver/metabolism
10.
Gen Comp Endocrinol ; 298: 113579, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32777222

ABSTRACT

Spermatogenesis is an extraordinarily complex process, regulated by several factors, which leads to the differentiation of spermatogonia into spermatozoa. Among vertebrates, several reports have been focused on the lizard Podarcis sicula, a seasonal breeder and a good model for the study of reproductive processes. The goal of this review is to resume all the available data about systemic and above all local control factors involved in the control of P. sicula testicular activity. During the seasonal reproductive cycle, the variation of the expression levels of these factors determines significant variations that induce the activation or blocking of spermatogenesis. The data supplied in this review, in addition to analyze the current literature regarding the main actors of Podarcis sicula spermatogenesis, will hopefully provide a basic model that can be used for further studies on the intratesticular interaction between molecular factors that control spermatogenesis.


Subject(s)
Lizards/physiology , Spermatogenesis/physiology , Animals , Male , Models, Biological , Reproduction/physiology , Testis/metabolism
11.
Gen Comp Endocrinol ; 297: 113550, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32679158

ABSTRACT

The adrenal gland is an essential component of the body stress response; it is formed by two portions: a steroidogenic and a chromaffin tissue. Despite the anatomy of adrenal gland is different among classes of vertebrates, the hormones produced are almost the same. During stress, these hormones contribute to body homeostasis and maintenance of ion balance. The adrenal gland is very sensitive to toxic compounds, many of which behave like endocrine-disruptor chemicals (EDCs). They contribute to alter the endocrine system in wildlife and humans and are considered as possible responsible of the decline of several vertebrate ectotherms. Considering that EDCs regularly can be found in all environmental matrices, the aim of this review is to collect information about the impact of these chemical compounds on the adrenal gland of fishes, amphibians and reptiles. In particular, this review shows the different behavior of these "sentinel species" when they are exposed to stress condition. The data supplied in this review can help to further elucidate the role of EDCs and their harmful impact on the survival of these vertebrates.


Subject(s)
Adrenal Glands/physiology , Amphibians/physiology , Endocrine Disruptors/toxicity , Fishes/physiology , Reptiles/physiology , Adrenal Glands/anatomy & histology , Adrenal Glands/ultrastructure , Animals , Chromaffin Cells/drug effects , Chromaffin Cells/ultrastructure
12.
Chemosphere ; 258: 127239, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32535440

ABSTRACT

Alkylphenols (AP) are widespread environmental compounds belonging to the large family of substances known as Endocrine Disrupting Chemicals (EDCs). The present study was carried out to assess the effects of Octylphenol (OP) alone and in combination with Nonylphenol (NP) on the hypothalamus-pituitary-adrenal gland (HPA) axis of the lizard Podarcis sicula. Lizards are good bioindicators due to their features such as wide distribution, large population and good sensitivity to contaminants. Results obtained showed a time and dose-dependent stimulation of the HPA together with a high variation of both catecholamine plasma levels and greater vascularization and hypertrophy of steroidogenic cord of adrenal gland after both OP and OP + NP treatments. Interestingly, the OP + NP mixture treatment has provoked a state of stress of the adrenal gland which in fact appeared to be characterized by the presence of a marked macrophage infiltration which can be seen especially close to the connective capsule surrounding the gland. This macrophage infiltration could be an evidence of a particularly pronounced inflammatory state to indicate, probably, an animal's response to a non-physiological situation.


Subject(s)
Adrenal Glands/drug effects , Endocrine Disruptors/toxicity , Hypothalamo-Hypophyseal System/drug effects , Lizards , Phenols/toxicity , Pituitary-Adrenal System/drug effects , Adrenal Glands/immunology , Adrenal Glands/physiology , Animals , Hypothalamo-Hypophyseal System/immunology , Lizards/physiology , Pituitary-Adrenal System/immunology
13.
Eur J Histochem ; 64(1)2020 Jan 27.
Article in English | MEDLINE | ID: mdl-31988532

ABSTRACT

The goal of this study was to evaluate P450 aromatase localization in the epididymis of two different vertebrates: the lizard Podarcis sicula, a seasonal breeder, and Rattus rattus, a continuous breeder. P450 aromatase is a key enzyme involved in the local control of spermatogenesis and steroidogenesis and we proved for the first time that this enzyme is represented in the epididymis of both P. sicula and R. rattus. In details, P450 aromatase was well represented in epithelial and myoid cells and in the connective tissue of P. sicula epididymis during the reproductive period; instead, during autumnal resumption this enzyme was absent in the connective tissue. During the non-reproductive period, P450 aromatase was localized only in myoid cells of P. sicula epididymis, whereas in R. rattus it was localized both in myoid cells and connective tissue. Our findings, the first on the epididymis aromatase localization in the vertebrates, suggest a possible role of P450 aromatase in the control of male genital tract function, particularly in sperm maturation.


Subject(s)
Aromatase/physiology , Epididymis/enzymology , Animals , Connective Tissue/enzymology , Immunohistochemistry , Lizards , Male , Rats , Reproduction/physiology
14.
Curr Res Toxicol ; 1: 5-11, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-34345832

ABSTRACT

Fetal exposure to certain phthalate esters can disrupt testis development in rodents and lead to male reproductive disorders, but with a causal link less certain in humans. Di(2-ethylhexyl) phthalate (DEHP) is one of the most common phthalates found in the environment and in rodents it is known to induce serious testis toxicity, as well as male reproductive disorders including cryptorchidism, hypospadias, impaired spermatogenesis and reduced fertility. In this study, we show that perinatal DEHP exposure disrupts gap junction localization in fetal and postnatal rat testis and correlate these findings to morphological changes. The protein Connexin 43 (CX43), normally expressed strongly in testicular gap junctions, was markedly downregulated in Leydig cells of DEHP-exposed fetal testes. In the postnatal testes, CX43 expression was recovered in the DEHP-exposed animals, even though Leydig cell clusters and malformed cords with intratubular Leydig cells were still present.

15.
Ecotoxicol Environ Saf ; 180: 412-419, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31108418

ABSTRACT

Estrogens play a role in the patho-physiology of the prostate. In the present work we studied the effects of nonylphenol (NP), a xenoestrogen, on human adenocarcinoma prostate cells (LNCaP). In order to understand molecular and cellular involvement, we observed the effects on cell cycle and we investigated the expression and the cellular localization of estrogen receptors and gene expression of cyclin D1, ki-67, c-myc, IL-8, IL-1ß. We performed the same experiments with 17ß-estradiol (E2), the most abundant estrogen circulating in nonpregnant humans in order to compare these two different substances. We demonstrated the ability of 1 × 10-10 M NP to induce proliferation of LNCaP, S-phase progression, increase of ERα expression and its translocation from the cytoplasm to the nucleus. Moreover, we observed an up-regulation of key target genes involved in cell cycle and inflammation process. Particularly, after NP treatment, IL-8 and IL-1ß mRNA levels are increased more than 50% indicating a major NP involvement in inflammation processes than E2. These data suggest the proliferative effects of NP on prostate adenocarcinoma cells and highlight some aspects of molecular pathways involved in prostate responses to NP.


Subject(s)
Environmental Pollutants/toxicity , Estradiol/toxicity , Estrogen Receptor alpha/metabolism , Phenols/toxicity , Prostatic Neoplasms/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D1/genetics , Gene Expression/drug effects , Humans , Interleukin-1beta/genetics , Male , Prostatic Neoplasms/metabolism
16.
Neurotoxicology ; 67: 46-53, 2018 07.
Article in English | MEDLINE | ID: mdl-29673962

ABSTRACT

Food intake ensures energy resources sufficient for basic metabolism, immune system and reproductive investment. It is already known that food-seeking performances, which are crucially controlled by orexins (ORXs), may be under the influence of environmental factors including pollutants. Among these, mancozeb (mz) is becoming an environmental risk for neurodegenerative diseases. Due to few studies on marine fish exposed to mz, it was our intention to correlate feeding latency, food intake and feeding duration to potential neurodegenerative processes in key diencephalic sites and expression changes of the ORX neuroreceptor (ORXR) in the ornate wrasses (Thalassoma pavo). Hence, fish exposed for 4 days (d) to mz 0.2 mg/l (deriving from a 0.07, 0.14, 0.2, 0.3 mg/l screening test) displayed a significant reduction (p < 0.05) of food intake compared to controls as early as 1d that became more evident (p < 0.01) after 3d. Moreover, significant enhancements of feeding latency were reported after 1d up to 3d (p < 0.001) and even feeding duration was enhanced up to 3d (p < 0.001), which instead moderately increased after 4d (p < 0.05). A reduction (-120%; p < 0.001) of mean body weight was also detected at the end of exposure. Likewise, a notable (p < 0.001) activation of ORXR protein occurred together with mRNA up-regulations in diencephalic areas such as the diffuse nucleus of the inferior lobe (+48%) that also exhibited evident degenerative neuronal fields. Overall, these results highlight an ORX role as a vital component of the neuroprotective program under environmental conditions that interfere with feeding behaviors.


Subject(s)
Feeding Behavior/drug effects , Fungicides, Industrial/toxicity , Maneb/toxicity , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Orexin Receptors/biosynthesis , Zineb/toxicity , Animals , Feeding Behavior/physiology , Female , Fishes , Gene Expression , Neurodegenerative Diseases/pathology , Orexin Receptors/genetics , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/pathology
17.
Ecotoxicol Environ Saf ; 147: 565-573, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28918339

ABSTRACT

Dibutylphthalate (DBP) is an environmental pollutant widely used as plasticizer in a variety of industrial applications worldwide. This agent can be found in personal-care products, children's toy, pharmaceuticals, food products. Exposure to DBP can occur via ingestion and inhalation as well as intravenous or skin contact. DBP belongs to the family of endocrine disrupting chemicals (EDCs) and its effects on reproductive system were demonstrated both in vivo and in vitro. In the present study we evaluated the effects of DBP on human prostate adenocarcinoma epithelial cells (LNCaP) in order to highlight xenoestrogens influence on human prostate. Moreover, we have compared DBP effects with 17ß-estradiol action in order to investigate possible mimetical behaviour. We have assessed the effects of both compounds on the cell viability. After then, we have evaluated the expression of genes and proteins involved in cell cycle regulation. Furthermore, we have observed the expression and the cell localization of estrogen (ERs) and androgen (AR) receptors. In conclusion, we have demonstrated that DBP interacts with estrogen hormonal receptor pathway but differently from E2. DBP alters the normal gland physiology and it is involved in the deregulation of prostate cell cycle.


Subject(s)
Dibutyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Epithelial Cells/drug effects , Plasticizers/toxicity , Prostate/drug effects , Cell Culture Techniques , Cell Line, Tumor , Cell Survival/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Estradiol/toxicity , Humans , Male , Prostate/metabolism , Prostate/pathology , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism
18.
Toxicol Appl Pharmacol ; 323: 26-35, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28330765

ABSTRACT

The pesticide mancozeb (mz) is recognized as a potent inducer of oxidative stress due to its ability to catalyze the production of reactive oxygen species plus inhibiting mitochondrial respiration thus becoming an environmental risk for neurodegenerative diseases. Despite numerous toxicological studies on mz have been directed to mammals, attention on marine fish is still lacking. Thus, it was our intention to evaluate neurobehavioral activities of ornate wrasses (Thalassoma pavo) exposed to 0.2mg/l of mz after a preliminary screening test (0.07-0.3mg/l). Treated fish exhibited an evident (p<0.001) latency to reach T-maze arms (>1000%) while exploratory attitudes (total arm entries) diminished (-50%; p<0.05) versus controls during spontaneous exploration tests. Moreover, they showed evident enhancements (+111%) of immobility in the cylinder test. Contextually, strong (-88%; p<0.01) reductions of permanence in light zone of the Light/Dark apparatus along with diminished crossings (-65%) were also detected. Conversely, wrasses displayed evident enhancements (160%) of risk assessment consisting of fast entries in the dark side of this apparatus. From a molecular point of view, a notable activation (p<0.005) of the brain transcription factor pCREB occurred during mz-exposure. Similarly, in situ hybridization supplied increased HSP90 mRNAs in most brain areas such as the lateral part of the dorsal telencephalon (Dl; +68%) and valvula of the cerebellum (VCe; +35%) that also revealed evident argyrophilic signals. Overall, these first indications suggest a possible protective role of the early biomarkers pCREB and HSP90 against fish toxicity.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Fish Proteins/metabolism , Fishes/metabolism , Fungicides, Industrial/toxicity , HSP90 Heat-Shock Proteins/metabolism , Maneb/toxicity , Nerve Degeneration , Neurotoxicity Syndromes/etiology , Water Pollutants, Chemical/toxicity , Zineb/toxicity , Animals , Brain/metabolism , Brain/pathology , Brain/physiopathology , Exploratory Behavior/drug effects , Female , Fish Proteins/genetics , Fishes/genetics , HSP90 Heat-Shock Proteins/genetics , Motor Activity/drug effects , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/psychology , Reaction Time/drug effects , Time Factors
19.
Toxicology ; 357-358: 21-32, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27260121

ABSTRACT

Nonylphenol (NP) is an industrial chemical with estrogenic activity both in vivo and in vitro; estrogens play a critical role in the development of prostate and may be the cause of some pathological states, including cancer. In this study we examined the effects of NP on human prostate non tumorigenic epithelial cells (PNT1A) investigating on cell proliferation, interaction with estrogen receptors (ERs) and gene expression of genes involved in prostate diseases. We found that NP affects cell proliferation at 10(-6)M, promoting a cytoplasm-nucleus translocation of ERα and not ERß, like the natural estrogen 17ß-estradiol (E2). Moreover, we showed that NP enhances gene expression of key regulators of cell cycle. Estrogen selective antagonist ICI182780 in part reverted the observed effects of NP. These results confirm the estrogenic activity of NP and suggest that other transduction pathways may be involved in NP action on prostate.


Subject(s)
Endocrine Disruptors/toxicity , Epithelial Cells/drug effects , Phenols/toxicity , Prostate/drug effects , Cell Line , Cell Proliferation/drug effects , Epithelial Cells/metabolism , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estrogen Receptor Antagonists/pharmacology , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Fulvestrant , Gene Expression Regulation/drug effects , Humans , Male , Prostate/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...