Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 197: 110798, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37028101

ABSTRACT

Radio Pharmaceutical Therapy (RPT) comes forth as a promising technique to treat a wide range of tumors while ensuring low collateral damage to nearby healthy tissues. This kind of cancer therapy exploits the radiation following the decay of a specific radionuclide to deliver a lethal dose to tumor tissues. In the framework of the ISOLPHARM project of INFN, 111Ag was recently proposed as a promising core of a therapeutic radiopharmaceutical. In this paper, the production of 111Ag via neutron activation of 110Pd-enriched samples inside a TRIGA Mark II nuclear research reactor is studied. The radioisotope production is modeled using two different Monte Carlo codes (MCNPX and PHITS) and a stand-alone inventory calculation code FISPACT-II, with different cross section data libraries. The whole process is simulated starting from an MCNP6-based reactor model producing the neutron spectrum and flux in the selected irradiation facility. Moreover, a cost-effective, robust and easy-to-use spectroscopic system, based on a Lanthanum Bromo-Chloride (LBC) inorganic scintillator, is designed and characterized, with the aim of using it, in the future, for the quality control of the ISOLPHARM irradiated targets at the SPES facility of the Legnaro National Laboratories of INFN. natPd and 110Pd-enriched samples are irradiated in the reactor main irradiation facility and spectroscopically characterized using the LBC-based setup and a multiple-fit analysis procedure. Experimental results are compared with theoretical predictions of the developed models, showing that inaccuracies in the available cross section libraries prevent an accurate reproduction of the generated radioisotope activities. Nevertheless, models are normalized to our experimental data allowing for a reliable planning of the 111Ag production in a TRIGA Mark II reactor.


Subject(s)
Radioisotopes , Radiopharmaceuticals , Dose-Response Relationship, Radiation , Radiopharmaceuticals/therapeutic use , Nuclear Reactors
2.
J Environ Qual ; 43(6): 1903-15, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25602207

ABSTRACT

A modeling framework consisting of a farm-scale model, Agricultural Policy Environmental Extender (APEX); a watershed-scale model, Soil and Water Assessment Tool (SWAT); and databases was used in the Conservation Effects Assessment Project to quantify the environmental benefits of conservation practices on cropland. APEX is used to simulate conservation practices on cultivated cropland and Conservation Reserve Program land to assess the edge-of-field water-quality benefits. Flow and pollutant loadings from APEX are input to SWAT. SWAT simulates the remaining noncultivated land and routes flow and loads generated from noncultivated land, point sources, and cropland to the basin outlet. SWAT is used for assessing the effects of practices on local and in-stream water-quality benefits. Each river basin is calibrated and validated for streamflow and loads at multiple gauging stations. The objectives of the current study are to estimate the effects of currently existing and additional conservation practices on total N (TN) loads in the Mississippi-Atchafalaya River Basin (MARB) and draw insights on TN load reductions necessary for reducing the hypoxic zone in the Gulf of Mexico. The effects of conservation practice scenarios on local and in-stream (riverine) water quality are evaluated. Model results indicate that conservation practices currently on cropland have reduced the TN losses to local waters between 20 and 59% in the six river basins within MARB and the TN load discharged to the Gulf by 17%. Further water-quality improvement can be obtained in the MARB with additional conservation treatment.

3.
J Environ Qual ; 43(1): 177-98, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602551

ABSTRACT

The USDA initiated the Conservation Effects Assessment Project (CEAP) to quantify the environmental benefits of conservation practices at regional and national scales. For this assessment, a sampling and modeling approach is used. This paper provides a technical overview of the modeling approach used in CEAP cropland assessment to estimate the off-site water quality benefits of conservation practices using the Ohio River Basin (ORB) as an example. The modeling approach uses a farm-scale model, Agricultural Policy Environmental Extender (APEX), and a watershed scale model (the Soil and Water Assessment Tool [SWAT]) and databases in the Hydrologic Unit Modeling for the United States system. Databases of land use, soils, land use management, topography, weather, point sources, and atmospheric depositions were developed to derive model inputs. APEX simulates the cultivated cropland, Conserve Reserve Program land, and the practices implemented on them, whereas SWAT simulates the noncultivated land (e.g., pasture, range, urban, and forest) and point sources. Simulation results from APEX are input into SWAT. SWAT routes all sources, including APEX's, to the basin outlet through each eight-digit watershed. Each basin is calibrated for stream flow, sediment, and nutrient loads at multiple gaging sites and turned in for simulating the effects of conservation practice scenarios on water quality. Results indicate that sediment, nitrogen, and phosphorus loads delivered to the Mississippi River from ORB could be reduced by 16, 15, and 23%, respectively, due to current conservation practices. Modeling tools are useful to provide science-based information for assessing existing conservation programs, developing future programs, and developing insights on load reductions necessary for hypoxia in the Gulf of Mexico.

SELECTION OF CITATIONS
SEARCH DETAIL
...