Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38597890

ABSTRACT

MOTIVATION: The rapid increase of bio-medical literature makes it harder and harder for scientists to keep pace with the discoveries on which they build their studies. Therefore, computational tools have become more widespread, among which network analysis plays a crucial role in several life-science contexts. Nevertheless, building correct and complete networks about some user-defined biomedical topics on top of the available literature is still challenging. RESULTS: We introduce NetMe 2.0, a web-based platform that automatically extracts relevant biomedical entities and their relations from a set of input texts-i.e. in the form of full-text or abstract of PubMed Central's papers, free texts, or PDFs uploaded by users-and models them as a BioMedical Knowledge Graph (BKG). NetMe 2.0 also implements an innovative Retrieval Augmented Generation module (Graph-RAG) that works on top of the relationships modeled by the BKG and allows the distilling of well-formed sentences that explain their content. The experimental results show that NetMe 2.0 can infer comprehensive and reliable biological networks with significant Precision-Recall metrics when compared to state-of-the-art approaches. AVAILABILITY AND IMPLEMENTATION: https://netme.click/.


Subject(s)
Internet , Software , Data Mining/methods , Computational Biology/methods , PubMed
2.
Sci Rep ; 12(1): 9181, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654808

ABSTRACT

Experimental evidence demonstrated that fluoro-edenite (FE) can develop chronic respiratory diseases and elicit carcinogenic effects. Environmental exposure to FE fibers is correlated with malignant pleural mesothelioma (MPM). An early diagnosis of MPM, and a comprehensive health monitoring of the patients exposed to FE fibers are two clinical issues that may be solved by the identification of specific biomarkers. We reported the microRNA (miRNA) and transfer RNA-derived non coding RNA (tRNA-derived ncRNA) transcriptome in human normal mesothelial and malignant mesothelioma cell lines exposed or not exposed to several concentration FE fibers. Furthermore, an interactive mesothelioma-based network was derived by using NetME tool. In untreated condition, the expression of miRNAs and tRNA-derived ncRNAs in tumor cells was significantly different with respect to non-tumor samples. Moreover, interesting and significant changes were found after the exposure of both cells lines to FE fibers. The network-based pathway analysis showed several signaling and metabolic pathways potentially involved in the pathogenesis of MPM. From papers analyzed by NetME, it is clear that many miRNAs can positively or negatively influence various pathways involved in MPM. For the first time, the analysis of tRNA-derived ncRNAs molecules in the context of mesothelioma has been made by using in vitro systems. Further studies will be designed to test and validate their diagnostic potential in high-risk individuals' liquid biopsies.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , MicroRNAs , Cell Line , Dietary Fiber , Humans , Mesothelioma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Transfer/genetics , RNA, Untranslated/genetics
3.
Front Genet ; 13: 855739, 2022.
Article in English | MEDLINE | ID: mdl-35571058

ABSTRACT

The inference of novel knowledge and new hypotheses from the current literature analysis is crucial in making new scientific discoveries. In bio-medicine, given the enormous amount of literature and knowledge bases available, the automatic gain of knowledge concerning relationships among biological elements, in the form of semantically related terms (or entities), is rising novel research challenges and corresponding applications. In this regard, we propose BioTAGME, a system that combines an entity-annotation framework based on Wikipedia corpus (i.e., TAGME tool) with a network-based inference methodology (i.e., DT-Hybrid). This integration aims to create an extensive Knowledge Graph modeling relations among biological terms and phrases extracted from titles and abstracts of papers available in PubMed. The framework consists of a back-end and a front-end. The back-end is entirely implemented in Scala and runs on top of a Spark cluster that distributes the computing effort among several machines. The front-end is released through the Laravel framework, connected with the Neo4j graph database to store the knowledge graph.

4.
Appl Netw Sci ; 7(1): 1, 2022.
Article in English | MEDLINE | ID: mdl-35013714

ABSTRACT

BACKGROUND: The rapidly increasing biological literature is a key resource to automatically extract and gain knowledge concerning biological elements and their relations. Knowledge Networks are helpful tools in the context of biological knowledge discovery and modeling. RESULTS: We introduce a novel system called NETME, which, starting from a set of full-texts obtained from PubMed, through an easy-to-use web interface, interactively extracts biological elements from ontological databases and then synthesizes a network inferring relations among such elements. The results clearly show that our tool is capable of inferring comprehensive and reliable biological networks. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s41109-021-00435-x.

5.
Genes (Basel) ; 12(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34210067

ABSTRACT

Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and, although its genetic background has been extensively studied, little is known about the contribution of non-coding RNAs (ncRNAs) to its pathogenesis. Indeed, its competitive endogenous RNA (ceRNA) regulatory network comprising microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and mRNAs has been insufficiently explored. Thanks to UM findings from The Cancer Genome Atlas (TCGA), it is now possible to statistically elaborate these data to identify the expression relationships among RNAs and correlative interaction data. In the present work, we propose the VECTOR (uVeal mElanoma Correlation NeTwORk) database, an interactive tool that identifies and visualizes the relationships among RNA molecules, based on the ceRNA model. The VECTOR database contains: i) the TCGA-derived expression correlation values of miRNA-mRNA, miRNA-lncRNA and lncRNA-mRNA pairs combined with predicted or validated RNA-RNA interactions; ii) data of sense-antisense sequence overlapping; iii) correlation values of Transcription Factor (TF)-miRNA, TF-lncRNA, and TF-mRNA pairs associated with ChiPseq data; iv) expression data of miRNAs, lncRNAs and mRNAs both in UM and physiological tissues. The VECTOR web interface can be queried, by inputting the gene name, to retrieve all the information about RNA signaling and visualize this as a graph. Finally, VECTOR provides a very detailed picture of ceRNA networks in UM and could be a very useful tool for researchers studying RNA signaling in UM. The web version of Vector is freely available at the URL reported at the end of the Introduction.


Subject(s)
Databases, Genetic , Gene Regulatory Networks , Melanoma/genetics , Software , Uveal Neoplasms/genetics , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
BMC Bioinformatics ; 20(Suppl 9): 366, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31757212

ABSTRACT

BACKGROUND: Several large public repositories of microarray datasets and RNA-seq data are available. Two prominent examples include ArrayExpress and NCBI GEO. Unfortunately, there is no easy way to import and manipulate data from such resources, because the data is stored in large files, requiring large bandwidth to download and special purpose data manipulation tools to extract subsets relevant for the specific analysis. RESULTS: TACITuS is a web-based system that supports rapid query access to high-throughput microarray and NGS repositories. The system is equipped with modules capable of managing large files, storing them in a cloud environment and extracting subsets of data in an easy and efficient way. The system also supports the ability to import data into Galaxy for further analysis. CONCLUSIONS: TACITuS automates most of the pre-processing needed to analyze high-throughput microarray and NGS data from large publicly-available repositories. The system implements several modules to manage large files in an easy and efficient way. Furthermore, it is capable deal with Galaxy environment allowing users to analyze data through a user-friendly interface.


Subject(s)
Big Data , Data Collection , Software , Transcriptome/genetics , Cell Line, Tumor , Databases, Genetic , Humans , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...