Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 9: 862118, 2022.
Article in English | MEDLINE | ID: mdl-35548416

ABSTRACT

Cardiac cells depend on specific sarcolemmal ion transporters to assure the correct intracellular pH regulation. The sodium/bicarbonate cotransporter (NBC) is one of the major alkalinizing mechanisms. In the heart two different NBC isoforms have been described: the electroneutral NBCn1 (1Na+:1 HCO 3 - ) and the electrogenic NBCe1 (1Na+:2 HCO 3 - ). NBCe1 generates an anionic repolarizing current that modulates the action potential duration (APD). In addition to regulating the pH, the NBC is a source of sodium influx. It has been postulated that NBC could play a role in the development of hypertrophy. The aim of this research was to study the contribution of NBCe1 in heart electrophysiology and in the development of heart hypertrophy in an in vivo mouse model with overexpression of NBCe1. Heart NBCe1 overexpression was achieved by a recombinant cardiotropic adeno-associated virus (AAV9) and was evidenced by western-blot and qPCR. AAV9-mCherry was used as a transduction control. NBCe1 overexpression fails to increase heart growth. Patch clamp and electrocardiogram were performed. We observed a reduction on both, ventricular myocytes APD and electrocardiogram QT interval corrected by cardiac rate, emphasizing for the first time NBCe1 relevance for the electrical activity of the heart.

2.
Life Sci ; 242: 117211, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31891720

ABSTRACT

Ventricular hypertrophy is a risk factors for arrhythmias, ischemia and sudden death. It involves cellular modifications leading to a pathological remodeling and is associated with heart failure. The activation of the G protein-coupled estrogen receptor (GPER) mediates beneficial actions in the cardiovascular system. Our goal was to prevent and regress the hypertrophy by the activation of GPER in neonatal cardiac myocytes (NRCM) and SHR male rats. Aldosterone increased the neonatal cardiomyocytes cell surface area after 48 h of incubation. The aldo-induced hypertrophy was blocked by the mineralocorticoid receptor (MR) inhibitor Eplererone or the reduction of MR expression by siRNA. The activation of GPER by the agonist G-1 totally prevented the increase surface area by Ald. The transfection of neonatal rat cardiac myocytes with a siRNA against GPER or the incubation with GPER blockers G-15 and G-36 inhibited the protection of G-1. The significant increase of cell surface area after 48 h of incubation with Ald was totally regressed in 24 h by the presence of G-1, indicating that the activation of GPER not only prevent the hypertrophy but also regress the hypertrophy when it is already established. In the in vivo model, G-1 or Vehicle was constantly infused via the minipump to SHR. The reduction of the hypertrophy by G-1 was evident by the cross-sectional area, BNP and ANP markers and by echocardiography. In this studied we demonstrated that the activation of GPER prevented and regressed the hypertrophy induced by Ald in NRCM and regressed hypertrophy in SHR rats.


Subject(s)
Cardiomegaly/prevention & control , Receptors, G-Protein-Coupled/metabolism , Animals , Animals, Newborn , Blotting, Western , Cardiomegaly/diagnostic imaging , Cells, Cultured , Cyclopentanes/pharmacology , Echocardiography , Eplerenone/pharmacology , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Quinolines/pharmacology , Rats , Rats, Inbred SHR , Rats, Wistar , Real-Time Polymerase Chain Reaction , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/physiology
3.
Pflugers Arch ; 472(1): 103-115, 2020 01.
Article in English | MEDLINE | ID: mdl-31754830

ABSTRACT

The soluble adenylyl cyclase (sAC) was identified in the heart as another source of cyclic AMP (cAMP). However, its cardiac physiological function is unknown. On the other hand, the cardiac Na+/HCO3- cotransporter (NBC) promotes the cellular co-influx of HCO3- and Na+. Since sAC activity is regulated by HCO3-, our purpose was to investigate the potential functional relationship between NBC and sAC in the cardiomyocyte. Rat ventricular myocytes were loaded with Fura-2, Fluo-3, or BCECF to measure Ca2+ transient (Ca2+i) by epifluorescence, Ca2+ sparks frequency (CaSF) by confocal microscopy, or intracellular pH (pHi) by epifluorescence, respectively. Sarcomere or cell shortening was measured with a video camera as an index of contractility. The NBC blocker S0859 (10 µM), the selective inhibitor of sAC KH7 (1 µM), and the PKA inhibitor H89 (0.1 µM) induced a negative inotropic effect which was associated with a decrease in Ca2+i. Since PKA increases Ca2+ release through sarcoplasmic reticulum RyR channels, CaSF was measured as an index of RyR open probability. The generation of CaSF was prevented by KH7. Finally, we investigated the potential role of sAC activation on NBC activity. NBC-mediated recovery from acidosis was faster in the presence of KH7 or H89, suggesting that the pathway sAC-PKA is negatively regulating NBC function, consistent with a negative feedback modulation of the HCO3- influx that activates sAC. In summary, the results demonstrated that the complex NBC-sAC-PKA plays a relevant role in Ca2+ handling and basal cardiac contractility.


Subject(s)
Adenylyl Cyclases/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Sodium-Bicarbonate Symporters/metabolism , Adenylyl Cyclase Inhibitors/pharmacology , Animals , Benzamides/pharmacology , Calcium Signaling , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Heart Ventricles/cytology , Isoquinolines/pharmacology , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Rats , Rats, Wistar , Ryanodine Receptor Calcium Release Channel/metabolism , Sodium-Bicarbonate Symporters/antagonists & inhibitors , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...