Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 170: 105691, 2021 08.
Article in English | MEDLINE | ID: mdl-34044128

ABSTRACT

Interkingdom communication between bacteria and host organisms is one of the most interesting research topics in biology. Quorum sensing molecules produced by Gram-negative bacteria, such as acylated homoserine lactones and quinolones, have been shown to interact with host cell receptors, stimulating innate immunity and bacterial clearance. To our knowledge, there is no evidence that these molecules influence CNS function. Here, we have found that low micromolar concentrations of the Pseudomonas aeruginosa quorum sensing autoinducer, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibited polyphosphoinositide hydrolysis in mouse brain slices, whereas four selected acylated homoserine lactones were inactive. PQS also inhibited forskolin-stimulated cAMP formation in brain slices. We therefore focused on PQS in our study. Biochemical effects of PQS were not mediated by the bitter taste receptors, T2R4 and T2R16. Interestingly, submicromolar concentrations of PQS could be detected in the serum and brain tissue of adult mice under normal conditions. Levels increased in five selected brain regions after single i.p. injection of PQS (10 mg/kg), peaked after 15 min, and returned back to normal between 1 and 4 h. Systemically administered PQS reduced spontaneous locomotor activity, increased the immobility time in the forced swim test, and largely attenuated motor response to the psychostimulant, methamphetamine. These findings offer the first demonstration that a quorum sensing molecule specifically produced by Pseudomonas aeruginosa is centrally active and influences cell signaling and behavior. Quorum sensing autoinducers might represent new interkingdom signaling molecules between ecological communities of commensal, symbiotic, and pathogenic microorganisms and the host CNS.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Cyclic AMP/metabolism , Phosphatidylinositol Phosphates/metabolism , Pseudomonas aeruginosa/metabolism , Quinolones/pharmacology , Quorum Sensing , Signal Transduction/drug effects , Animals , Brain/metabolism , Host-Pathogen Interactions , Hydrolysis , In Vitro Techniques , Locomotion/drug effects , Male , Mice , Morris Water Maze Test/drug effects , Motor Activity/drug effects , Quinolones/metabolism
2.
Mol Pharmacol ; 76(2): 379-87, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19439499

ABSTRACT

The interaction between 5-hydroxytryptamine(2A) (5-HT(2A)) serotonin receptors and metabotropic glutamate (mGlu) 2/3 receptors underlies the antipsychotic activity of mGlu2/3 receptor agonists in experimental animals and humans. The molecular nature of this interaction is only partially known. We here report for the first time that pharmacological activation of mGlu2/3 receptors attenuates the stimulation of polyphosphoinositide (PI) hydrolysis mediated by 5-HT(2A) receptors in the frontal cortex of living mice. Mice were injected intracerebroventricularly with [myo-(3)H]inositol and treated with drugs 1 h after a pretreatment with lithium, which blocks the conversion of inositol monophosphate into free inositol. Systemic injection of the mGlu2/3 receptor agonist (-)-2-oxa-4-aminocyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268) inhibited the stimulation of PI hydrolysis induced by the hallucinogenic 5-HT(2A) receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) without affecting the stimulation by mGlu1/5 or muscarinic receptors. The action of LY379268 was prevented by the preferential mGlu2/3 receptor antagonist (2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl)glycine (LY341495). N-(4'-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), a selective mGlu2 receptor enhancer, also reduced DOI-stimulated PI hydrolysis when combined with subthreshold doses of LY379268. Systemic LY379268 inhibited DOI-stimulated PI hydrolysis in mice lacking either mGlu2 or mGlu3 receptors but was inactive in double mGlu2/mGlu3 receptor knockout mice, suggesting that both mGlu2 and mGlu3 receptors interact with 5-HT(2A) receptors. Surprisingly, contrasting results were obtained in cortical slice preparations, where LY379268 amplified both DOI- and 3,5-dihydroxyphenylglycine-stimulated PI hydrolysis. Amplification was abrogated by the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)pyridine, suggesting that experiments in brain slices are biased by an additional component of receptor-stimulated PI hydrolysis. This highlights the importance of in vivo models for the study of the interaction between 5-HT(2A) and mGlu2/3 receptors.


Subject(s)
Frontal Lobe/drug effects , Phosphatidylinositols/pharmacology , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Metabotropic Glutamate/metabolism , Amino Acids/pharmacology , Amphetamines/pharmacology , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Hydrolysis , Male , Mice , Mice, Inbred Strains , Mice, Knockout , Pyridines/pharmacology , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/physiology , Sulfonamides/pharmacology , Xanthenes/pharmacology
3.
Mol Pharmacol ; 75(4): 991-1003, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19164443

ABSTRACT

We examined the regulation of mGlu2 and mGlu3 metabotropic glutamate receptor signaling prompted by the emerging role of these receptor subtypes as therapeutic targets for psychiatric disorders, such as anxiety and schizophrenia. In transfected human embryonic kidney 293 cells, G-protein-coupled receptor kinase (GRK) 2 and GRK3 fully desensitized the agonist-dependent inhibition of cAMP formation mediated by mGlu3 receptors. In contrast, GRK2 or other GRKs did not desensitize the cAMP response to mGlu2 receptor activation. Desensitization of mGlu3 receptors by GRK2 required an intact kinase activity, as shown by the use of the kinase-dead mutant GRK2-K220R or the recombinant GRK2 C-terminal domain. Overexpression of beta-arrestin1 also desensitized mGlu3 receptors and did not affect the cAMP signaling mediated by mGlu2 receptors. The difference in the regulation of mGlu2 and mGlu3 receptors was signal-dependent because GRK2 desensitized the activation of the mitogen-activated protein kinase pathway mediated by both mGlu2 and mGlu3 receptors. In vivo studies confirmed the resistance of mGlu2 receptor-mediated cAMP signaling to homologous desensitization. Wild-type, mGlu2(-/-), or mGlu3(-/-) mice were treated intraperitoneally with saline or the mixed mGlu2/3 receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0]-exhane-4,6-dicarboxylic acid (LY379268; 1 mg/kg) once daily for 7 days. Inhibition of forskolin-stimulated cAMP formation by LY379268 was measured in cortical slices prepared 24 h after the last injection. Agonist pretreatment fully desensitized the cAMP response in wild-type and mGlu2(-/-) mice but had no effect in mGlu3(-/-) mice, in which LY379268 could only activate the mGlu2 receptor. We predict the lack of tolerance when mixed mGlu2/3 receptor agonists or selective mGlu2 enhancers are used continually in patients.


Subject(s)
G-Protein-Coupled Receptor Kinases/physiology , Receptors, Metabotropic Glutamate/physiology , Animals , Cell Line , G-Protein-Coupled Receptor Kinases/genetics , Humans , Mice , Mice, Knockout , Mutation , Receptors, Metabotropic Glutamate/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...