Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nature ; 617(7961): 507-512, 2023 05.
Article in English | MEDLINE | ID: mdl-37198308

ABSTRACT

Electric vehicles demand high charge and discharge rates creating potentially dangerous temperature rises. Lithium-ion cells are sealed during their manufacture, making internal temperatures challenging to probe1. Tracking current collector expansion using X-ray diffraction (XRD) permits non-destructive internal temperature measurements2; however, cylindrical cells are known to experience complex internal strain3,4. Here, we characterize the state of charge, mechanical strain and temperature within lithium-ion 18650 cells operated at high rates (above 3C) by means of two advanced synchrotron XRD methods: first, as entire cross-sectional temperature maps during open-circuit cooling and second, single-point temperatures during charge-discharge cycling. We observed that a 20-minute discharge on an energy-optimized cell (3.5 Ah) resulted in internal temperatures above 70 °C, whereas a faster 12-minute discharge on a power-optimized cell (1.5 Ah) resulted in substantially lower temperatures (below 50 °C). However, when comparing the two cells under the same electrical current, the peak temperatures were similar, for example, a 6 A discharge resulted in 40 °C peak temperatures for both cell types. We observe that the operando temperature rise is due to heat accumulation, strongly influenced by the charging protocol, for example, constant current and/or constant voltage; mechanisms that worsen with cycling because degradation increases the cell resistance. Design mitigations for temperature-related battery issues should now be explored using this new methodology to provide opportunities for improved thermal management during high-rate electric vehicle applications.

2.
Nat Commun ; 9(1): 4751, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30420610

ABSTRACT

We report the results from the first 5D tomographic diffraction imaging experiment of a complex Ni-Pd/CeO2-ZrO2/Al2O3 catalyst used for methane reforming. This five-dimensional (three spatial, one scattering and one dimension to denote time/imposed state) approach enabled us to track the chemical evolution of many particles across the catalyst bed and relate these changes to the gas environment that the particles experience. Rietveld analysis of some 2 × 106 diffraction patterns allowed us to extract heterogeneities in the catalyst from the Å to the nm and to the µm scale (3D maps corresponding to unit cell lattice parameters, crystallite sizes and phase distribution maps respectively) under different chemical environments. We are able to capture the evolution of the Ni-containing species and gain a more complete insight into the multiple roles of the CeO2-ZrO2 promoters and the reasons behind the partial deactivation of the catalyst during partial oxidation of methane.

3.
Nat Commun ; 9(1): 1389, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29643346

ABSTRACT

Vitrification from physical vapor deposition is known to be an efficient way for tuning the kinetic and thermodynamic stability of glasses and significantly improve their properties. There is a general consensus that preparing stable glasses requires the use of high substrate temperatures close to the glass transition one, Tg. Here, we challenge this empirical rule by showing the formation of Zr-based ultrastable metallic glasses (MGs) at room temperature, i.e., with a substrate temperature of only 0.43Tg. By carefully controlling the deposition rate, we can improve the stability of the obtained glasses to higher values. In contrast to conventional quenched glasses, the ultrastable MGs exhibit a large increase of Tg of ∼60 K, stronger resistance against crystallization, and more homogeneous structure with less order at longer distances. Our study circumvents the limitation of substrate temperature for developing ultrastable glasses, and provides deeper insight into glasses stability and their surface dynamics.

4.
Chem Commun (Camb) ; 51(64): 12752-5, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26041252

ABSTRACT

We report the results from an operando XRD-CT study of a working catalytic membrane reactor for the oxidative coupling of methane. These results reveal the importance of the evolving solid state chemistry during catalytic reaction, particularly the chemical interaction between the catalyst and the oxygen transport membrane.

5.
Phys Chem Chem Phys ; 15(22): 8640-7, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23552520

ABSTRACT

The behaviour of the Pd phase in three way catalysts (TWCs) having a Ce-Zr oxide as a promoter component has been examined under CO/NO cycling conditions. In order to extract information on the role of the noble metal and the metal-promoter interface, two catalysts in, respectively, the presence or the absence of the promoter and having a similar Pd particle size were analyzed by a synchronous multitechnique approach using X-ray absorption (XAS) or high energy X-ray diffraction (HXRD) in combination with diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and mass spectrometry (MS). From a structural point of view it is shown that the promoter oxide strongly influences Pd behaviour, limiting morphological (size/shape) and structural (formation of carbide/oxide phases) modifications occurring under dynamic conditions in the absence of the promoter. Activity measurements show that these phenomena have important chemical consequences in terms of CO/NO pollutant metal coverage(s), the occurrence of NO and/or CO dissociation steps as well as the subsequent transformation of the pollutants into CO2 and N2.


Subject(s)
Carbon Monoxide/chemistry , Cesium/chemistry , Nitric Oxide/chemistry , Palladium/chemistry , Thermodynamics , Zirconium/chemistry , Molecular Structure
6.
Phys Chem Chem Phys ; 14(16): 5628-34, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22434321

ABSTRACT

In situ synchrotron X-ray diffraction and diffuse reflectance infrared spectroscopy (DRIFTS) are combined to study the influence of sulfur on the crystallization of pure and Fe-doped titania nano-materials. Using these two tools we have investigated the effect of sulfur on the nucleation and growth processes of the anatase polymorph from amorphous powders and show how the addition of sulfur controls the primary particle size and shape of the materials. As well known, sulfur leads to the stabilization of the oxide particle size against sintering during thermal treatments and here we interpret the physico-chemical basis of such behaviour as an exclusive effect on grain growth kinetics, in turn linked to the dehydration of the surface layers of the materials. In addition this work shows that the presence of sulfur also affects the shape of the anatase particles, favouring the existence of (101)-type surfaces and elongated (along the c crystallographic axis) particles. This combined analysis of how sulfur influences morphological aspects of the anatase phase as it grows provides a basis for understanding of surface and chemical properties of anatase nano-powders that are highly dependent upon particle morphology.


Subject(s)
Iron/chemistry , Nanostructures/chemistry , Sulfur/chemistry , Titanium/chemistry , Molecular Structure , Particle Size , Surface Properties
7.
Rev Sci Instrum ; 82(6): 063702, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21721697

ABSTRACT

Hard x rays from a synchrotron source are used in this implementation of computed laminography for three-dimensional (3D) imaging of flat, laterally extended objects. Due to outstanding properties of synchrotron light, high spatial resolution down to the micrometer scale can be attained, even for specimens having lateral dimensions of several decimeters. Operating either with a monochromatic or with a white synchrotron beam, the method can be optimized to attain high sensitivity or considerable inspection throughput in synchrotron user and small-batch industrial experiments. The article describes the details of experimental setups, alignment procedures, and the underlying reconstruction principles. Imaging of interconnections in flip-chip and wire-bonded devices illustrates the peculiarities of the method compared to its alternatives and demonstrates the wide application potential for the 3D inspection and quality assessment in microsystem technology.

8.
Nat Mater ; 7(3): 189-93, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18264104

ABSTRACT

When a granular material such as sand is mixed with a certain amount of liquid, the surface tension of the latter bestows considerable stiffness to the material, which enables, for example, sand castles to be sculpted. The geometry of the liquid interface within the granular pile is of extraordinary complexity and strongly varies with the liquid content. Surprisingly, the mechanical properties of the pile are largely independent of the amount of liquid over a wide range. We resolve this puzzle with the help of X-ray microtomography, showing that the remarkable insensitivity of the mechanical properties to the liquid content is due to the particular organization of the liquid in the pile into open structures. For spherical grains, a simple geometric rule is established, which relates the macroscopic properties to the internal liquid morphologies. We present evidence that this concept is also valid for systems with non-spherical grains. Hence, our results provide new insight towards understanding the complex physics of a large variety of wet granular systems including land slides, as well as mixing and agglomeration problems.

9.
J Neurooncol ; 78(2): 135-43, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16598429

ABSTRACT

PURPOSE: Microbeam radiation therapy (MRT), a novel experimental radiosurgery that largely spares the developing CNS and other normal tissues, is tolerated well by developing animals and palliates advanced 9LGS tumors. This report, to our knowledge, is the first demonstration that gene-mediated immunotherapy (GMIMPR) enhances the efficacy of MRT for advanced 9LGS tumors. METHODS: Seventy-six male Fischer 344 rats were implanted ic with 10(4)9LGS cells on d0. By d14, the cells had generated approximately approximately 40 mm3 ic 9LGS tumours, experimental models for therapy of moderately aggressive human malignant astrocytomas. Each of the 14 untreated (control) rats died from a large (>100 mg) ic tumor before d29 (median, d21). On d14, the remaining 62 rats were given deliberately suboptimal microbeam radiation therapy (MRT) by a single lateral exposure of the tumor-bearing zone of the head to a 10.1 mm-wide, approximately approximately 11 mm-high array of 20-39 microm-wide, nearly parallel beams of synchrotron wiggler-generated radiation (mainly approximately 50-150 keV X-rays) that delivered 625 Gy peak skin doses at approximately approximately 211 microm ctc intervals in approximately approximately 300 ms either without additional treatments (MRT-only, 25 rats), with post-MRT GMIMPR (MRT+GMIMPR, 23 rats: multiple sc injections of irradiated (clonogenically-disabled) GM-CSF gene-transfected 9LGS cells), or with post-MRT IMPR (MRT+IMPR, 14 rats: multiple sc injections of irradiated (clonogenically-disabled) 9LGS cells. RESULTS: The median post-implantation survivals of rats in the MRT-only, MRT+GMIMPR and MRT+IMPR groups were over twice that of controls; further, approximately approximately 20% of rats in MRT-only and MRT+IMPR groups survived >1 yr with no obvious disabilities. Moreover, over 40% of MRT+GMIMPR rats survived >1 yr with no obvious disabilities, a significant (P<0.04) increase over the MRT-only and MRT+IMPR groups. SIGNIFICANCE: These data suggest that the combination of MRT+GMIMPR might be better than MRT only for unifocal CNS tumors, particularly in infants and young children.


Subject(s)
Brain Neoplasms/therapy , Gliosarcoma/therapy , Immunotherapy/methods , Radiosurgery/methods , Age Factors , Animals , Brain Neoplasms/immunology , Brain Neoplasms/surgery , Combined Modality Therapy/methods , Genetic Therapy , Gliosarcoma/immunology , Gliosarcoma/surgery , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Immunization , Male , Radiotherapy Dosage , Rats , Rats, Inbred F344 , Statistics, Nonparametric , Survival Analysis , Transfection
10.
Science ; 308(5718): 92-5, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15802600

ABSTRACT

Creep damage by void nucleation and growth limits the lifetime of components subjected to loading at high temperatures. We report a combined tomography and diffraction experiment using high-energy synchrotron radiation that permitted us to follow in situ void growth and microstructure development in bulk samples. The results reveal that void growth versus time follows an exponential growth law. The formation of large void volumes coincides with texture evolution and dislocation density, reaching a steady state. Creep damage during a large proportion of sample creep life is homogeneous before damage localization occurs, which leads to rapid failure. The in situ determination of void evolution in bulk samples should allow for the assessment of creep damage in metallic materials and subsequently for lifetime predictions about samples and components that are subject to high-temperature loading.

11.
Med Phys ; 30(4): 583-9, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12722810

ABSTRACT

Preclinical experiments are carried out with approximately 20-30 microm wide, approximately 10 mm high parallel microbeams of hard, broad-"white"-spectrum x rays (approximately 50-600 keV) to investigate microbeam radiation therapy (MRT) of brain tumors in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. Novel physical microdosimetry (implemented with MOSFET chips in the "edge-on" mode) and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue-equivalent phantom. Such microbeam irradiation causes minimal damage to normal tissues, possible because of rapid repair of their microscopic lesions. Radiation damage from an array of parallel microbeams tends to correlate with the range of peak-valley dose ratios (PVDR). This paper summarizes comparisons of our dosimetric MOSFET measurements with Monte Carlo calculations. Peak doses at depths <22 mm are 18% less than Monte Carlo values, whereas those depths >22 mm and valley doses at all depths investigated (2 mm-62 mm) are within 2-13% of the Monte Carlo values. These results lend credence to the use of MOSFET detector systems in edge-on mode for microplanar irradiation dosimetry.


Subject(s)
Brain Neoplasms/physiopathology , Brain Neoplasms/radiotherapy , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy/instrumentation , Rhombencephalon/physiopathology , Transducers , Animals , Computer Simulation , Equipment Design , Equipment Failure Analysis , Europe , Humans , Infant, Newborn , Miniaturization , Models, Biological , Nuclear Medicine Department, Hospital , Radiometry/methods , Radiotherapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Reproducibility of Results , Semiconductors , Sensitivity and Specificity , Synchrotrons
12.
Med Phys ; 27(7): 1664-75, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10947271

ABSTRACT

Microbeam radiation therapy (MRT) is a currently experimental method of radiotherapy which is mediated by an array of parallel microbeams of synchrotron-wiggler-generated x-rays. Suitably selected, nominally supralethal doses of x-rays delivered to parallel microslices of tumor-bearing tissues in rats can be either palliative or curative while causing little or no serious damage to contiguous normal tissues. Although the pathogenesis of MRT-mediated tumor regression is not understood, as in all radiotherapy such understanding will be based ultimately on our understanding of the relationships among the following three factors: (1) microdosimetry, (2) damage to normal tissues, and (3) therapeutic efficacy. Although physical microdosimetry is feasible, published information on MRT microdosimetry to date is computational. This report describes Monte Carlo-based computational MRT microdosimetry using photon and/or electron scattering and photoionization cross-section data in the 1 eV through 100 GeV range distributed publicly by the U.S. Lawrence Livermore National Laboratory (LLNL) in the 1990s. These are compared with Monte Carlo-based microdosimetric computations using a code and physical data available in the 1980s. With the aim of using the PSI-version of GEANT Monte Carlo code for future macro- and micro/nano-dosimetric studies of Microbeam Radiation Therapy (MRT) a comparison of this code is made with the INHOM(EGS4) (version 1990), Dilmanian-CPE and Persliden-CPE Monte Carlo photon-electron codes (both version 1990) with which the absorbed dose distributions were calculated in 1990 and 1991 considering, (a) a single cylindrical microbeam, (b) multiple cylindrical microbeams in an orthogonal square bundle, and (c) multiple planar microbeams. It is shown that the PSI-version of GEANT can potentially deliver more accurate results (a) using presently the most advanced atomic data, and especially (b) employing "Single-collision" electron transport instead of only the "Condensed-history" electron transport as in code INHOM(EGS4). In contrast Dilmanian-CPE and Persliden-CPE codes deposit the electron energy locally instead of transporting it to the correct position.


Subject(s)
Radiotherapy/instrumentation , Radiotherapy/methods , Algorithms , Carbon , Dose-Response Relationship, Radiation , Electron Transport , Electrons/therapeutic use , Humans , Hydrogen , Ions , Monte Carlo Method , Neoplasms, Experimental/radiotherapy , Nitrogen , Oxygen , Phantoms, Imaging , Photons/therapeutic use , Radiometry/methods , Scattering, Radiation , Software , Water , X-Rays
13.
Int J Radiat Biol ; 76(4): 567-74, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10815638

ABSTRACT

PURPOSE: To examine tissue lesions caused by microplanar beams of synchrotron-generated X-rays in Drosophila melanogaster using stereomicroscopy, light and electron microscopy. MATERIALS AND METHODS: Pupae were irradiated by 25-microm wide, 1.175 mm-high parallel microplanes at 100 microm on-centre intervals, at 20, 24, 32, 36, 48 or 72 h of development, with absorbed doses per microplane between 75 and 3,000 Gy. RESULTS: Transverse or longitudinal irradiation with in-slice absorbed doses of 75 or 375 Gy caused no recognizable effects. All pupae irradiated at or after 48 h developed normally. Conversely, the development to adulthood was delayed in 90% of pupae irradiated at 24h with doses of 750 Gy. However, neither those pupae nor adults that hatched after pupal irradiation at 48 and 72 h displayed morphological changes. Pupae exposed at 48 h of development to 3,000 Gy developed into adults with sharply delimited lesions in the irradiated microplanes of the compound eye or the cuticle of wings and abdomen. CONCLUSIONS: Post-mitotic eukaryotic cells can survive radiation doses of 3,000 Gy largely undamaged, even at the beginning of the terminal morphogenesis. The extremely sharp delimitation between damaged tissue microplanes and adjacent intact tissues may be relevant for future perspectives of radiosurgery.


Subject(s)
Drosophila melanogaster/radiation effects , Animals , Dose-Response Relationship, Radiation , Hair/radiation effects , Thorax/radiation effects , X-Rays
14.
Phys Med Biol ; 43(10): 2845-52, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9814522

ABSTRACT

Phase contrast x-ray imaging is a powerful technique for the detection of low-contrast details in weakly absorbing objects. This method is of possible relevance in the field of diagnostic radiology. In fact, imaging low-contrast details within soft tissue does not give satisfactory results in conventional x-ray absorption radiology, mammography being a typical example. Nevertheless, up to now all applications of the phase contrast technique, carried out on thin samples, have required radiation doses substantially higher than those delivered in conventional radiological examinations. To demonstrate the applicability of the method to mammography we produced phase contrast images of objects a few centimetres thick while delivering radiation doses lower than or comparable to doses needed in standard mammographic examinations (typically approximately 1 mGy mean glandular dose (MGD)). We show images of a custom mammographic phantom and of two specimens of human breast tissue obtained at the SYRMEP bending magnet beamline at Elettra, the Trieste synchrotron radiation facility. The introduction of an intensifier screen enabled us to obtain phase contrast images of these thick samples with radiation doses comparable to those used in mammography. Low absorbing details such as 50 microm thick nylon wires or thin calcium deposits (approximately 50 microm) within breast tissue, invisible with conventional techniques, are detected by means of the proposed method. We also find that the use of a bending magnet radiation source relaxes the previously reported requirements on source size for phase contrast imaging. Finally, the consistency of the results has been checked by theoretical simulations carried out for the purposes of this experiment.


Subject(s)
Diagnostic Imaging/methods , Mammography/methods , Biopsy , Diagnostic Imaging/instrumentation , Humans , Microscopy, Phase-Contrast , Radiography/methods , Synchrotrons , X-Rays
15.
Radiology ; 208(3): 709-15, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9722850

ABSTRACT

A linear-array, silicon pixel detector, capable of counting single photons, was applied to mammography by using a synchrotron radiation beam. Images were obtained of both a mammographic phantom and a breast-tissue sample. The phantom image was acquired with a mean glandular dose of 0.32 mGy. This detector combined with a synchrotron radiation beam allows acquisition of high-contrast, low-dose images of soft tissues.


Subject(s)
Breast/radiation effects , Linear Energy Transfer , Mammography/instrumentation , Phantoms, Imaging , Radiometry/instrumentation , Silicon , Female , Humans , Photons , Radiation Dosage , Radiographic Image Enhancement/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...