Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 100(1): 333-343, 2024.
Article in English | MEDLINE | ID: mdl-38875037

ABSTRACT

Background: Amnestic syndrome of the hippocampal type (ASHT) in Memory Clinics is a presentation common to Alzheimer's disease (AD). However, ASHT can be found in other neurodegenerative disorders. Objective: To compare brain morphometry including hippocampal volumes between amnestic older adults with and without AD pathology and investigate their relationship with memory performance and cerebrospinal fluid (CSF) biomarkers. Methods: Brain morphometry of 92 consecutive patients (72.5±6.8 years old; 39% female) with Free and Cued Selective Recall Reminding Test (FCSRT) total recall < 40/48 was assessed with an automated algorithm and compared between AD and non-AD patients, as defined by CSF biomarkers. Results: AD and non-AD patients presented comparable brain morphology. Total recall was associated to hippocampal volume irrespectively from AD pathology. Conclusions: Brain morphometry, including hippocampal volumes, is similar between AD and non-AD older adults with ASHT evaluated in a Memory Clinic, underlying the importance of using molecular biomarkers for the diagnosis of AD.


Subject(s)
Alzheimer Disease , Amnesia , Brain , Hippocampus , Magnetic Resonance Imaging , Humans , Female , Aged , Male , Alzheimer Disease/pathology , Amnesia/pathology , Amnesia/diagnostic imaging , Hippocampus/pathology , Hippocampus/diagnostic imaging , Brain/pathology , Brain/diagnostic imaging , Biomarkers/cerebrospinal fluid , Neuropsychological Tests , Aged, 80 and over , Mental Recall/physiology , Amyloid beta-Peptides/cerebrospinal fluid , Organ Size
2.
Neuroinformatics ; 21(1): 21-34, 2023 01.
Article in English | MEDLINE | ID: mdl-35982364

ABSTRACT

Brain aneurysm detection in Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) has undergone drastic improvements with the advent of Deep Learning (DL). However, performances of supervised DL models heavily rely on the quantity of labeled samples, which are extremely costly to obtain. Here, we present a DL model for aneurysm detection that overcomes the issue with "weak" labels: oversized annotations which are considerably faster to create. Our weak labels resulted to be four times faster to generate than their voxel-wise counterparts. In addition, our model leverages prior anatomical knowledge by focusing only on plausible locations for aneurysm occurrence. We first train and evaluate our model through cross-validation on an in-house TOF-MRA dataset comprising 284 subjects (170 females / 127 healthy controls / 157 patients with 198 aneurysms). On this dataset, our best model achieved a sensitivity of 83%, with False Positive (FP) rate of 0.8 per patient. To assess model generalizability, we then participated in a challenge for aneurysm detection with TOF-MRA data (93 patients, 20 controls, 125 aneurysms). On the public challenge, sensitivity was 68% (FP rate = 2.5), ranking 4th/18 on the open leaderboard. We found no significant difference in sensitivity between aneurysm risk-of-rupture groups (p = 0.75), locations (p = 0.72), or sizes (p = 0.15). Data, code and model weights are released under permissive licenses. We demonstrate that weak labels and anatomical knowledge can alleviate the necessity for prohibitively expensive voxel-wise annotations.


Subject(s)
Intracranial Aneurysm , Female , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/pathology , Magnetic Resonance Angiography/methods , Sensitivity and Specificity
3.
Radiol Cardiothorac Imaging ; 1(5): e180026, 2019 Dec.
Article in English | MEDLINE | ID: mdl-33778525

ABSTRACT

PURPOSE: To evaluate whether radiomics features of late gadolinium enhancement (LGE) regions at cardiac MRI enable distinction between myocardial infarction (MI) and myocarditis and to compare radiomics with subjective visual analyses by readers with different experience levels. MATERIALS AND METHODS: In this retrospective, institutional review board-approved study, consecutive MRI examinations of 111 patients with MI and 62 patients with myocarditis showing LGE were included. By using open-source software, classification performances attained from two-dimensional (2D) and three-dimensional (3D) texture analysis, shape, and first-order descriptors were compared, applying five different machine learning algorithms. A nested, stratified 10-fold cross-validation was performed. Classification performances were compared through Wilcoxon signed-rank tests. Supervised and unsupervised feature selection techniques were tested; the effect of resampling MR images was analyzed. Subjective image analysis was performed on 2D and 3D image sets by two independent, blinded readers with different experience levels. RESULTS: When trained with recursive feature elimination (RFE), a support vector machine achieved the best results (accuracy: 88%) for 2D features, whereas linear discriminant analysis (LDA) showed the highest accuracy (85%) for 3D features (P <.05). When trained with principal component analysis (PCA), LDA attained the highest accuracy with both 2D (86%) and 3D (89%; P =.4) features. Results found for classifiers trained with spline resampling were less accurate than those achieved with one-dimensional (1D) nearest-neighbor interpolation (P <.05), whereas results for classifiers trained with 1D nearest-neighbor interpolation and without resampling were similar (P =.1). As compared with the radiomics approach, subjective visual analysis performance was lower for the less experienced and higher for the experienced reader for both 2D and 3D data. CONCLUSION: Radiomics features of LGE permit the distinction between MI and myocarditis with high accuracy by using either 2D features and RFE or 3D features and PCA.© RSNA, 2019Supplemental material is available for this article.

SELECTION OF CITATIONS
SEARCH DETAIL
...