Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38855913

ABSTRACT

MOTIVATION: Coding and noncoding RNA molecules participate in many important biological processes. Noncoding RNAs fold into well-defined secondary structures to exert their functions. However, the computational prediction of the secondary structure from a raw RNA sequence is a long-standing unsolved problem, which after decades of almost unchanged performance has now re-emerged due to deep learning. Traditional RNA secondary structure prediction algorithms have been mostly based on thermodynamic models and dynamic programming for free energy minimization. More recently deep learning methods have shown competitive performance compared with the classical ones, but there is still a wide margin for improvement. RESULTS: In this work we present sincFold, an end-to-end deep learning approach, that predicts the nucleotides contact matrix using only the RNA sequence as input. The model is based on 1D and 2D residual neural networks that can learn short- and long-range interaction patterns. We show that structures can be accurately predicted with minimal physical assumptions. Extensive experiments were conducted on several benchmark datasets, considering sequence homology and cross-family validation. sincFold was compared with classical methods and recent deep learning models, showing that it can outperform the state-of-the-art methods.


Subject(s)
Computational Biology , Deep Learning , Nucleic Acid Conformation , RNA , RNA/chemistry , RNA/genetics , Computational Biology/methods , Algorithms , Neural Networks, Computer , Thermodynamics
2.
Article in English | MEDLINE | ID: mdl-35417352

ABSTRACT

The computational methods for the prediction of gene function annotations aim to automatically find associations between a gene and a set of Gene Ontology (GO) terms describing its functions. Since the hand-made curation process of novel annotations and the corresponding wet experiments validations are very time-consuming and costly procedures, there is a need for computational tools that can reliably predict likely annotations and boost the discovery of new gene functions. This work proposes a novel method for predicting annotations based on the inference of GO similarities from expression similarities. The novel method was benchmarked against other methods on several public biological datasets, obtaining the best comparative results. exp2GO effectively improved the prediction of GO annotations in comparison to state-of-the-art methods. Furthermore, the proposal was validated with a full genome case where it was capable of predicting relevant and accurate biological functions. The repository of this project withh full data and code is available at https://github.com/sinc-lab/exp2GO.


Subject(s)
Computational Biology , Gene Ontology , Computational Biology/methods , Molecular Sequence Annotation , Phenotype
3.
Heliyon ; 5(10): e02529, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31667382

ABSTRACT

The most important index of obstructive sleep apnea/hypopnea syndrome (OSAHS) is the apnea/hyponea index (AHI). The AHI is the number of apnea/hypopnea events per hour of sleep. Algorithms for the screening of OSAHS from pulse oximetry estimate an approximation to AHI counting the desaturation events without consider the sleep stage of the patient. This paper presents an automatic system to determine if a patient is awake or asleep using heart rate (HR) signals provided by pulse oximetry. In this study, 70 features are estimated using entropy and complexity measures, frequency domain and time-scale domain methods, and classical statistics. The dimension of feature space is reduced from 70 to 40 using three different schemes based on forward feature selection with support vector machine and feature importance with random forest. The algorithms were designed, trained and tested with 5000 patients from the Sleep Heart Health Study database. In the test stage, 10-fold cross validation method was applied obtaining performances up to 85.2% accuracy, 88.3% specificity, 79.0% sensitivity, 67.0% positive predictive value, and 91.3% negative predictive value. The results are encouraging, showing the possibility of using HR signals obtained from the same oximeter to determine the sleep stage of the patient, and thus potentially improving the estimation of AHI based on only pulse oximetry.

4.
Brief Bioinform ; 20(5): 1607-1620, 2019 09 27.
Article in English | MEDLINE | ID: mdl-29800232

ABSTRACT

MOTIVATION: The importance of microRNAs (miRNAs) is widely recognized in the community nowadays because these short segments of RNA can play several roles in almost all biological processes. The computational prediction of novel miRNAs involves training a classifier for identifying sequences having the highest chance of being precursors of miRNAs (pre-miRNAs). The big issue with this task is that well-known pre-miRNAs are usually few in comparison with the hundreds of thousands of candidate sequences in a genome, which results in high class imbalance. This imbalance has a strong influence on most standard classifiers, and if not properly addressed in the model and the experiments, not only performance reported can be completely unrealistic but also the classifier will not be able to work properly for pre-miRNA prediction. Besides, another important issue is that for most of the machine learning (ML) approaches already used (supervised methods), it is necessary to have both positive and negative examples. The selection of positive examples is straightforward (well-known pre-miRNAs). However, it is difficult to build a representative set of negative examples because they should be sequences with hairpin structure that do not contain a pre-miRNA. RESULTS: This review provides a comprehensive study and comparative assessment of methods from these two ML approaches for dealing with the prediction of novel pre-miRNAs: supervised and unsupervised training. We present and analyze the ML proposals that have appeared during the past 10 years in literature. They have been compared in several prediction tasks involving two model genomes and increasing imbalance levels. This work provides a review of existing ML approaches for pre-miRNA prediction and fair comparisons of the classifiers with same features and data sets, instead of just a revision of published software tools. The results and the discussion can help the community to select the most adequate bioinformatics approach according to the prediction task at hand. The comparative results obtained suggest that from low to mid-imbalance levels between classes, supervised methods can be the best. However, at very high imbalance levels, closer to real case scenarios, models including unsupervised and deep learning can provide better performance.


Subject(s)
Machine Learning , MicroRNAs/physiology , Animals , Computational Biology , Humans , MicroRNAs/chemistry , MicroRNAs/genetics
5.
Med Eng Phys ; 36(8): 1074-80, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24931493

ABSTRACT

Detection of desaturations on the pulse oximetry signal is of great importance for the diagnosis of sleep apneas. Using the counting of desaturations, an index can be built to help in the diagnosis of severe cases of obstructive sleep apnea-hypopnea syndrome. It is important to have automatic detection methods that allows the screening for this syndrome, reducing the need of the expensive polysomnography based studies. In this paper a novel recognition method based on the empirical mode decomposition of the pulse oximetry signal is proposed. The desaturations produce a very specific wave pattern that is extracted in the modes of the decomposition. Using this information, a detector based on properly selected thresholds and a set of simple rules is built. The oxygen desaturation index constructed from these detections produces a detector for obstructive sleep apnea-hypopnea syndrome with high sensitivity (0.838) and specificity (0.855) and yields better results than standard desaturation detection approaches.


Subject(s)
Oximetry/methods , Sleep Apnea, Obstructive/diagnosis , Algorithms , Databases, Factual , Diagnosis, Computer-Assisted , Humans , Oxygen/metabolism , Pattern Recognition, Automated/methods , ROC Curve , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Sleep Apnea, Obstructive/physiopathology
6.
Article in English | MEDLINE | ID: mdl-22255705

ABSTRACT

Segmentation is an important step in computer-aided diagnostic systems for pigmented skin lesions, since that a good definition of the lesion area and its boundary at the image is very important to distinguish benign from malignant cases. In this paper a new skin lesion segmentation method is proposed. This method uses Independent Component Analysis to locate skin lesions in the image, and this location information is further refined by a Level-set segmentation method. Our method was evaluated in 141 images and achieved an average segmentation error of 16.55%, lower than the results for comparable state-of-the-art methods proposed in literature.


Subject(s)
Algorithms , Dermoscopy/methods , Image Interpretation, Computer-Assisted/methods , Melanoma/pathology , Pattern Recognition, Automated/methods , Pigmentation Disorders/pathology , Skin Neoplasms/pathology , Humans , Image Enhancement/methods , Principal Component Analysis , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...