Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Inorg Chem ; 61(44): 17579-17589, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36269886

ABSTRACT

UI4(1,4-dioxane)2 was subjected to laser-based heating─a method that enables localized, fast heating (T > 2000 °C) and rapid cooling under controlled conditions (scan rate, power, atmosphere, etc.)─to understand its thermal decomposition. A predictive computational thermodynamic technique estimated the decomposition temperature of UI4(1,4-dioxane)2 to uranium (U) metal to be 2236 °C, a temperature achievable under laser irradiation. Dictated by the presence of reactive, gaseous byproducts, the thermal decomposition of UI4(1,4-dioxane)2 under furnace conditions up to 600 °C revealed the formation of UO2, UIx, and U(C1-xOx)y, while under laser irradiation, UI4(1,4-dioxane)2 decomposed to UO2, U(C1-xOx)y, UC2-zOz, and UC. Despite the fast dynamics associated with laser irradiation, the central uranium atom reacted with the thermal decomposition products of the ligand (1,4-dioxane = C4H8O2) instead of producing pure U metal. The results highlight the potential to co-develop uranium precursors with specific irradiation procedures to advance nuclear materials research by finding new pathways to produce uranium carbide.

3.
J Hazard Mater ; 424(Pt C): 127657, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34785437

ABSTRACT

In situ remediation applications of ammonia (NH3) gas have potential for sequestration of subsurface contamination. Ammonia gas injections initially increase the pore water pH leading to mineral dissolution followed by formation of secondary precipitates as the pH is neutralized. However, there is a lack of understanding of fundamental alteration processes due to NH3 treatment. In these batch studies, phyllosilicate minerals (illite and montmorillonite) were exposed to NH3 gas with subsequent aeration to simulate in situ remediation. Following treatments, solids were characterized using a variety of techniques, including X-ray diffraction, N2 adsorption-desorption analysis for surface area, Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), and microscopy methods to investigate physicochemical transformations. Results indicate that, at high pH, the clays are altered as observed by differences in morphology and particle size via microscopy. However, the two clays interact differently with NH3. While montmorillonite interlayers collapsed due to intercalation, illite layers were unaffected as confirmed by FTIR analysis. Further, structural changes in silicate ([SiO4]n-) and aluminol (Al-OH) groups were identified by NMR and FTIR. This research showed that mineral alteration processes occur during and after NH3 gas treatment which may be used to remove radionuclides from the aqueous phase through sorption, co-precipitation, and coating with secondary phyllosilicate alteration products.

4.
J Environ Radioact ; 216: 106182, 2020 May.
Article in English | MEDLINE | ID: mdl-32063556

ABSTRACT

The use of an aqueous reductant (Na-dithionite) with pH buffer (K-carbonate, pH 12) was evaluated in this laboratory study as a potential remedial approach for removing Fe oxide associated iodine and enhancing pump-and-treat extraction from iodine-contaminated sediments in the unconfined aquifer in the 200 West Area of the Hanford Site. X-ray fluorescence data of untreated sediment indicated that iodine was largely associated with Fe (i.e., potentially incorporated into Fe oxides), but XANES data was inconclusive as to valence state. During groundwater leaching, aqueous and adsorbed iodine was quickly released, then additional iodine was slowly released potentially from slow dissolution of one or more surface phases. The Na-dithionite treatment removed greater iodine mass (2.9x) at a faster rate (1-4 orders of magnitude) compared to leaching with groundwater alone. Iron extractions for untreated and treated sediments showed a decrease in Fe(III)-oxides, which likely released iodine to aqueous solution. Solid phase inorganic carbon and aqueous Ca and Mg analysis further confirmed that significant calcite dissolution did not occur in these experiments meaning these phases did not release significant iodine. Although it was expected that, after treatment, 127I concentrations would eventually be lower than untreated sediments, continued, elevated iodine concentrations for treated samples over 750 h were observed for leaching experiments. Stop flow events during 1-D column leaching suggested that some iodide precipitated within the first few pore volumes. Further, batch extraction experiments compared iodine-129/127 removal and showed that iodine-129 was more readily removed than iodine-127 suggesting that the two are present in different phases due to their different origins. Although significantly greater iodine is removed with treatment, the long-term leaching needs to be investigated further as it may limit dithionite treatment at the field scale.


Subject(s)
Iodine Radioisotopes/isolation & purification , Ferric Compounds , Geologic Sediments , Groundwater , Radiation Monitoring , Solubility , Water Pollutants, Radioactive
SELECTION OF CITATIONS
SEARCH DETAIL
...