Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(10): e31157, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813145

ABSTRACT

Despite the polluting potential olive mill wastewater (OMW) can be a useful source of nutrients and organic compounds to improve soil properties. The aim of this paper was to verify if biochar-based treatment of OMW could be an efficient method to contrast the richness in phenolic compounds and phytotoxicity of OMW making it more suitable. for soil amendment. In this study poplar biochar (BP) was more effective than conifer biochar (BC) in terms of adsorbing phenols and reducing phytotoxicity at different biochar rates (5 and 10 %). In soil amendment BP-treated OMW induced an increase of organic carbon by approximately 15 % and notably BP10 treated OMW enhanced available phosphorous by 25 % after 30 days of incubation. In soil amended with 10 % BP-treated OMW microbial biomass and enzymatic activities were significantly enhanced after 30 and 90 days, with no effect on cress seed germination. Therefore, biochar based-treatment could be cost-effective and able to facilitate the long-term management of OMW in terms of storage and disposal.

2.
Heliyon ; 9(12): e22894, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125515

ABSTRACT

Olive mill wastewater (OMW) is the effluent derived from the oil extraction processes from olives. Despite the polluting potential OMW can be a useful source of nutrients and organic compounds to improve soil properties. OMW could negatively affect soil and water quality as this waste is rich in phenolic compounds and has high COD and BOD5. Biochar-based treatment could be an efficient method to remediate OMW. In this study poplar biochar (BP) was more effective than conifer biochar (BC) in terms of adsorbing phenols and reducing phytotoxicity at different biochar rates (5 and 10 %). BP-treated OMW was used in soil amendment and induced an increase in chemical properties, especially in organic carbon after 30 days of incubation. In soil amended with 10 % BP-treated OMW microbial biomass, enzymatic activities, and cress seed germination were significantly enhanced after 30 and 90 days.

3.
Int J Phytoremediation ; 24(3): 271-282, 2022.
Article in English | MEDLINE | ID: mdl-34121527

ABSTRACT

This study has contributed in the description of bioaugmentation-phytoremediation efficiency process using Typha angustifolia concerning PCP tolerance and removal from wastewater. Samples of wastewater were collected from industrial wastewater plants, namely row wastewater effluent "E.WW", primary wastewater "P.WW", secondary wastewater "S.WW", clarified wastewater "AC.WW". These effluents were spiked with PCP at different rate (100, 500, and 1000 mg.L-1), physical, chemical and biological properties were monitored. A second experiment was set up in order to check the efficiency of phytoremediation treatments of the different effluents artificially contaminated with 200 mg.L-1 PCP after 20 days lab scale experiment. An important PCP removal by indigenous bacteria was showed in S. WW with values from 1000 to 72.2 mg.L-1 from T0 (start of the experiment) to TF (end of the experiment), respectively. Phytoremediation process allowed a decrease of PCP rate from 200 to 6.4 mg.L-1, a decrease of chloride content from 14.0 to 4.0 mg.L-1 in S.WW samples was observed. Furthermore, a significant increase of bacterial number in S.WW and AC.WW to 1.700 × 106 and 1.450 × 106 CFU.mL-1, respectively was observed. In addition, the DGGE analysis showed that after bioaugmentation-phytoremediation treatments, the highest species richness and relative abundance in wastewater effluent was observed. Novelty statement Pentachlorophenol (PCP) is one of highly toxic of polychlorophenols and required to continuously monitor in environment. This paper presenting a sensitive method phytoremediation and bioaugmentation for PCP biotransformation in wastewater. The novelty is the choice of a macrophyte Typha angustifolia, which is still used for the elimination of heavy metals but it not used for pesticide and pollutant removal in wastewater. Also, there are different analysis that was performed in order to check phyto-technique process (DGGE and HPLC). On the other side, in this study, the phyto-techniques with Typha angustifolia positively affected intrinsic microorganisms in order to promote pollutant remediation. So, the intrinsic microorganisms in wastewater with the macrophyte presence have a great capacity to reduce this pollutant and improve the bioremediation process.


Subject(s)
Metals, Heavy , Pentachlorophenol , Typhaceae , Biodegradation, Environmental , Wastewater
4.
Chemosphere ; 290: 133359, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34933026

ABSTRACT

Pentachlorophenol (PCP) is quite persistent in the environment and severely affects different ecosystems including forest soil. The main objective of this work was to study different bioremediation processes of artificially PCP (100 mg kg-1) contaminated forest soil (Sc). In fact, we used bioaugmentation by adding two different bacterial consortia B1 and B2, biostimulation procedures by amendments based on forest compost (FC), municipal solid waste compost (MC), sewage sludge (SS), and phosphate, and their combined treatments. Soil physical and chemical properties, residual PCP, soil microbial biomass carbon, soil respiration and some enzymatic activities at zero time and after 30 d of incubation, were evaluated. A net reduction of PCP, 71% of the initial concentration, after 30 d-incubation occurred in the sample Sc+B1+FC, as the best performance among all treatments, due to natural attenuation, immobilization of PCP molecules in the forest soil through organic amendments, and the action of the exogenous microbial consortium B1. The single application of FC or B1 led to a depletion of PCP concentration of 52% and 41%, respectively. Soil microbial biomass carbon decreased in PCP contaminated soil but it increased when organic amendment also in combination with microbial consortia was carried out as bioremediation action. Soil respiration underwent no changes in contaminated soil and increased under FC based bioremediation treatment. These results demonstrate that the combined treatments of biostimulation and bioaugmentation might be a promising process for remediation of PCP contaminated soil.


Subject(s)
Pentachlorophenol , Soil Pollutants , Biodegradation, Environmental , Ecosystem , Forests , Soil , Soil Microbiology , Soil Pollutants/analysis
5.
Arch Microbiol ; 203(10): 6231-6243, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34591145

ABSTRACT

The aims of this study were (i) to compare PCP removal (100 mg L-1) by two bacterial consortia B1 and B2 in sterile wastewater (STWW) and liquid mineral medium (MSM), (ii) PCP effect in biofilm formation and antimicrobial susceptibility. PCP removal was measured by high-performance liquid chromatography (HPLC) during 168 h at 30 °C. Biofilm formation was assessed with two approaches: Congo Red Agar and Microtiter-plate. Antimicrobial susceptibility was determined by the agar disc diffusion technique. The results showed that the PCP removal for consortium B1 and B2 after 168 h was 70 and 97.5% in STWW; 62.2 and 85.5% in MSM, respectively. In addition, PCP addition showed an increase in biofilm development especially for B2 consortium around 3.5 nm in 100 mg L-1 PCP. PCP added in the Muller Hinton (MH) medium and Gentamicin disc showed a clear increase in diameter of cell lysis around 2 to 4.5 cm.


Subject(s)
Pentachlorophenol , Bacteria , Biodegradation, Environmental , Biotransformation , Wastewater
6.
J Agric Food Chem ; 68(35): 9461-9474, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32809829

ABSTRACT

Digestates, a byproduct of the anaerobic bioconversion of organic wastes for the production of biogas, are highly variable in chemical and biological properties, thus limiting their potential use in agriculture as soil amendment. Using a lab-scale glass reactor, we aimed to assess the feasibility to chemically stabilize the solid fraction of an anaerobic digestate by applying a Fenton reaction under constant pH (3.0), temperature (70 °C), reaction time (8 h), and various combinations of H2O2 and Fe2+. In Fenton-treated samples, the phytotoxic potential (determined on a test plant), total phenols, and the bad smell odor index markedly declined, whereas total C and N remained unaltered. Thermogravimetric (TG) analysis and Fourier transform infrared (FT-IR) spectroscopy revealed contrasting changes in extracted humic and fulvic fractions being increased or depleted, respectively, in aromatic substances. Process feasibility and optimum conditions for an effective biomass stabilization were achieved with a H2O2/Fe2+ ratio between 0.02 and 0.03.


Subject(s)
Humic Substances/analysis , Hydrogen Peroxide/chemistry , Iron/chemistry , Soil/chemistry , Anaerobiosis , Benzopyrans/analysis , Biomass , Hydrogen-Ion Concentration
7.
J Sci Food Agric ; 100(1): 193-200, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31502246

ABSTRACT

BACKGROUND: Lemon processing procedures yield a significant amount of waste as peels, which are 57% of processed lemons and represent a possible source of bioactive compounds (essential oils, EOs). EOs were extracted from lemon fruits belonging to four cultivars harvested at four different sampling times (25 October, 23 November, 20 December, 1 February), characterized, and quantified through gas chromatography-mass spectrometry. RESULTS: The chemical composition of EOs highlighted that 26 compounds of the four lemon cultivars at the different ripening stages were clearly identified. The compounds analysed belonged to four chemical classes: monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpenes, and fatty alcohol esters. Among the monoterpene hydrocarbons, d-limonene, ß-pinene, and γ-terpinene were the most abundant; and among the oxygenated monoterpenes, α-terpineol, nerol, and geraniol were the most abundant. Quantitative gas chromatography-mass spectrometry analysis of the most abundant monoterpene hydrocarbons (α-pinene, ß-pinene, myrcene, d-limonene, and γ-terpinene) highlighted that the amount of EOs decreased during ripening stages. 'Ovale di Sorrento' and 'Sfusato Amalfitano' showed the highest level of EOs in December, whereas in 'Femminello Cerza' and 'Femminello Adamo' this occurred in November. EOs, as well as the phenolic compounds, were positively correlated with the antioxidant activity (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid). CONCLUSIONS: EOs reached the highest level in the four lemon cultivars at different ripening stages. Campanian cultivars ('Ovale di Sorrento' and 'Sfusato Amalfitano') showed the greatest EO content in November, whereas in Sicilian cultivars ('Femminello Cerza' and 'Femminello Adamo') this occurred in December. Besides phenolic compounds, measured in lemon peel extracts, EOs can contribute to antioxidant activity, as demonstrated by the positive correlation. © 2019 Society of Chemical Industry.


Subject(s)
Citrus/growth & development , Fruit/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Bicyclic Monoterpenes/analysis , Citrus/chemistry , Cyclohexane Monoterpenes/analysis , Fruit/growth & development , Sesquiterpenes/analysis
8.
Chemosphere ; 186: 193-201, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28778017

ABSTRACT

Phenanthrene (Phe) and pentachlorophenol (PCP) are classified as persistent organic pollutants and represent serious concern for the environment as they are toxic and ubiquitous. Biochar based remediation is an emerging technology used in water and soil contamination. In this study we used poplar (BP) and conifer (BC) biochars to remediate water and soil contaminated by Phe and PCP. BP and BC were able to remove completely either Phe or PCP from contaminated water within one to three days. When biochar was confined in a porous membrane, BC and BP maintained their sorption efficiency for several remediation cycles. However, in these conditions BC allowed faster Phe removal. In soil remediation experiments, addition of two biochar rates, i.e. 2.5 and 5 mg g-1, strongly reduced Phe extractability (up to 2.7% of the initially added Phe with the larger BC dose). This was similar to the behavior observed when compost was applied in order to verify the role of soil organic matter in the fate of both contaminants. PCP extractability was reduced only up to 75% (in average) in all samples including those with compost amendment. Only larger amount of biochar (20 and 50 mg g-1) allowed reduction of the extractable PCP and nullified phytotoxicity of the contaminant.


Subject(s)
Charcoal/chemistry , Environmental Restoration and Remediation , Pentachlorophenol/chemistry , Phenanthrenes/chemistry , Environment , Environmental Pollution , Pentachlorophenol/analysis , Phenanthrenes/analysis , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...