Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(12): 18440-18448, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32680042

ABSTRACT

We experimentally investigate the impact of pump-signal overlap in ultra-wideband (>13THz) Raman amplifiers and measure the transmission penalty on 30GBaud PM-QPSK signals due to adjacent Raman pumps in a 15dB gain, 150nm (∼18.8THz) S+C+L-band discrete Raman amplifier. We present an efficient numerical model to predict the performance penalty induced by crosstalk from Rayleigh backscattered light from backward-propagating Raman pumps showing good agreement with the experimental results. A 4nm guard-band must be retained around an overlapping Raman pump based on typical, commercial semiconductor laser pump diodes to ensure a negligible transmission penalty in S-band.

2.
Int J Mol Sci ; 21(11)2020 May 29.
Article in English | MEDLINE | ID: mdl-32486023

ABSTRACT

Parkinson's disease (PD) is the second most prevalent late-age onset neurodegenerative disorder, affecting 1% of the population after the age of about 60 years old and 4% of those over 80 years old, causing motor impairments and cognitive dysfunction. Increasing evidence indicates that Mediterranean diet (MD) exerts beneficial effects in maintaining health, especially during ageing and by the prevention of neurodegenerative disorders. In this regard, olive oil and its biophenolic constituents like hydroxytyrosol (HT) have received growing attention in the past years. Thus, in the current study we test the health-promoting effects of two hydroxytyrosol preparations, pure HT and Hidrox® (HD), which is hydroxytyrosol in its "natural" environment, in the established invertebrate model organism Caenorhabditis elegans. HD exposure led to much stronger beneficial locomotion effects in wild type worms compared to HT in the same concentration. Consistent to this finding, in OW13 worms, a PD-model characterized by α-synuclein expression in muscles, HD exhibited a significant higher effect on α-synuclein accumulation and swim performance than HT, an effect partly confirmed also in swim assays with the UA44 strain, which features α-synuclein expression in DA-neurons. Interestingly, beneficial effects of HD and HT treatment with similar strength were detected in the lifespan and autofluorescence of wild-type nematodes, in the neuronal health of UA44 worms as well as in the locomotion of rotenone-induced PD-model. Thus, the hypothesis that HD features higher healthspan-promoting abilities than HT was at least partly confirmed. Our study demonstrates that HD polyphenolic extract treatment has the potential to partly prevent or even treat ageing-related neurodegenerative diseases and ageing itself. Future investigations including mammalian models and human clinical trials are needed to uncover the full potential of these olive compounds.


Subject(s)
Caenorhabditis elegans/physiology , Olea/chemistry , Parkinson Disease/diet therapy , Parkinson Disease/physiopathology , Polyphenols/pharmacology , Aging , Animals , Animals, Genetically Modified , Biomarkers/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/metabolism , Diet, Mediterranean , Disease Models, Animal , Dopaminergic Neurons/metabolism , Humans , Longevity , Microscopy, Fluorescence , Olive Oil/chemistry , Rotenone/toxicity , alpha-Synuclein/metabolism
3.
Int J Mol Sci ; 21(7)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276415

ABSTRACT

Numerous studies highlighted the beneficial effects of the Mediterranean diet (MD) in maintaining health, especially during ageing. Even neurodegeneration, which is part of the natural ageing process, as well as the foundation of ageing-related neurodegenerative disorders like Alzheimer's and Parkinson's disease (PD), was successfully targeted by MD. In this regard, olive oil and its polyphenolic constituents have received increasing attention in the last years. Thus, this study focuses on two main olive oil polyphenols, hydroxytyrosol (HT) and oleuropein aglycone (OLE), and their effects on ageing symptoms with special attention to PD. In order to avoid long-lasting, expensive, and ethically controversial experiments, the established invertebrate model organism Caenorhabditis elegans was used to test HT and OLE treatments. Interestingly, both polyphenols were able to increase the survival after heat stress, but only HT could prolong the lifespan in unstressed conditions. Furthermore, in aged worms, HT and OLE caused improvements of locomotive behavior and the attenuation of autofluorescence as a marker for ageing. In addition, by using three different C. elegans PD models, HT and OLE were shown i) to enhance locomotion in worms suffering from α-synuclein-expression in muscles or rotenone exposure, ii) to reduce α-synuclein accumulation in muscles cells, and iii) to prevent neurodegeneration in α-synuclein-containing dopaminergic neurons. Hormesis, antioxidative capacities and an activity-boost of the proteasome & phase II detoxifying enzymes are discussed as potential underlying causes for these beneficial effects. Further biological and medical trials are indicated to assess the full potential of HT and OLE and to uncover their mode of action.


Subject(s)
Acetates/therapeutic use , Cyclopentane Monoterpenes/therapeutic use , Dopaminergic Neurons/metabolism , Parkinson Disease/prevention & control , Phenylethyl Alcohol/analogs & derivatives , Pyrans/therapeutic use , alpha-Synuclein , Acetates/pharmacology , Animals , Animals, Genetically Modified , Caenorhabditis elegans/drug effects , Cyclopentane Monoterpenes/pharmacology , Disease Models, Animal , Dopaminergic Neurons/physiology , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Polyphenols/pharmacology , Pyrans/pharmacology , Treatment Outcome
4.
Opt Express ; 28(4): 5436-5447, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32121764

ABSTRACT

We present and validate a statistical method able to separate nonlinear interference noise (NLIN) into a residual Gaussian (ResN) and a phase noise (NLPN) component. We take into account the interaction of the NLIN with the receiver's DSP, mainly through carrier phase recovery (CPR), by considering the amount of correlation of the NLPN component. This allows obtaining in a straightforward way an accurate prediction of the achievable post-DSP transmission performance. We apply our method on simulated data in different scenarios. For this purpose: (i) several different quadrature amplitude modulation (QAM) and probabilistically shaped (PS) formats are investigated and (ii) simulations with standard single mode fiber (SSMF) and dispersion shifted fiber (DSF) are performed. In all these cases we validate the results provided by our method through comparison with ideal data-aided CPR and a more practical blind phase search (BPS) algorithm. The results obtained are finally compared with the predictions of existing theoretical models and the differences with our approach are pointed out.

5.
Environ Toxicol ; 35(1): 78-86, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31486570

ABSTRACT

Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that gives flexibility to various polyvinyl chloride products. It is a pollutant easily released into the environment and can cause many adverse effects to living organisms including hepatotoxicity. The thioredoxin system is a determining factor in the redox balance maintaining in the liver, which is a vulnerable tissue of reactive oxygen species overproduction because of its high energy needs. In order to determine if the thioredoxin system is a target in the development of DEHP hepatotoxicity, Balb/c mice were administered with DEHP intraperitoneally daily for 30 days. Results demonstrated that after DEHP exposure, biochemical profile changes were observed. This phthalate causes oxidative damage through the induction of lipid peroxydation as well as the increase of superoxide dismutase and catalase activities. As new evidence provided in this study, we demonstrated that the DEHP affected the thioredoxin system by altering the expression and the activity of thioredoxin (Trx) and thioredoxin Reductase (TrxR1). The two enzyme activities of the oxidative phase of the pentose phosphate pathway: Glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase were also affected by this phthalate. This leads to a decrease in the level of nicotinamide adenine dinucleotide phosphate used by the TrxR1 to maintain the regeneration of the reduced Trx. We also demonstrated that such effects can be responsible of DEHP-induced DNA damage.


Subject(s)
Diethylhexyl Phthalate/toxicity , Environmental Pollutants/toxicity , Liver/drug effects , Oxidative Stress/drug effects , Pentose Phosphate Pathway/drug effects , Plasticizers/toxicity , Thioredoxins/metabolism , Animals , DNA Damage , Dose-Response Relationship, Drug , Glucosephosphate Dehydrogenase/metabolism , Injections, Intraperitoneal , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...