Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 16(5): 787-795, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29319097

ABSTRACT

Molecular tools to stabilize the ß-hairpin conformation are needed as ß-hairpin peptides are useful molecules for pharmaceutical, biological and materials applications. We explored the use of a "triazole bridge", a covalent link between two ß-hairpin strands obtained through Cu-catalyzed alkyne-azide cycloaddition, combined with an aromatic-aromatic interaction. Highly conformationally stable peptides were identified by NMR screening of a small collection of cyclic peptides based on the Trpzip2 scaffold. The characteristic Trp-Trp interaction of Trpzip2 was replaced by a diagonal triazole bridge of variable length. NMR and CD analyses showed that triazole and indole rings could favorably interact to stabilize a ß-hairpin conformation. The conformational stabilization depends on the length of the triazole bridge and the reciprocal position between the aromatic rings. Combining aromatic interactions and the covalent inter-strand triazole bridge is a useful strategy to obtain peptides with a high ß-hairpin content.


Subject(s)
Peptides/chemistry , Triazoles/chemistry , Tryptophan/chemistry , Amino Acid Sequence , Catalysis , Copper/chemistry , Cycloaddition Reaction , Peptides/chemical synthesis , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Protein Conformation, beta-Strand , Protein Stability , Thermodynamics , Triazoles/chemical synthesis , Tryptophan/chemical synthesis
2.
RSC Adv ; 8(50): 28716-28735, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-35542469

ABSTRACT

The increasing realization of the involvement of lectin-glycan recognition in (patho)physiological processes inspires envisioning therapeutic intervention by high-avidity/specificity blocking reagents. Synthetic glycoclusters are proving to have potential for becoming such inhibitors but the commonly used assays have their drawbacks to predict in vivo efficacy. They do not represent the natural complexity of (i) cell types and (ii) spatial and structural complexity of glycoconjugate representation. Moreover, testing lectins in mixtures, as present in situ, remains a major challenge, giving direction to this work. Using a toolbox with four lectins and six bi- to tetravalent glycoclusters bearing the cognate sugar in a model study, we here document the efficient and versatile application of tissue sections (from murine jejunum as the model) as a platform for routine and systematic glycocluster testing without commonly encountered limitations. The nature of glycocluster structure, especially core and valency, and of protein features, i.e. architecture, fine-specificity and valency, are shown to have an influence, as cell types can differ in response profiles. Proceeding from light microscopy to monitoring by fluorescence microscopy enables grading of glycocluster activity on individual lectins tested in mixtures. This work provides a robust tool for testing glycoclusters prior to considering in vivo experiments.

3.
Org Lett ; 19(21): 5802-5805, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29039672

ABSTRACT

Glycosyl thiols are widely used in stereoselective S-glycoside synthesis. Their epimerization from 1,2-trans to 1,2-cis thiols (e.g., equatorial to axial epimerization in thioglucopyranose) was attained using TiCl4, while SnCl4 promoted their axial-to-equatorial epimerization. The method included application for stereoselective ß-d-manno- and ß-l-rhamnopyranosyl thiol formation. Complex formation explains the equatorial preference when using SnCl4, whereas TiCl4 can shift the equilibrium toward the 1,2-cis thiol via 1,3-oxathiolane formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...