Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Dalton Trans ; 50(46): 17029-17040, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34761774

ABSTRACT

Two new transition metal complexes with 1-methylimidazole (1-MeIm) and azide as ligands, namely, [Co(1-MeIm)4(N3)2] (1) and [Ni(1-MeIm)4(N3)2] (2), have been synthesized and characterized by IR, Raman, UV-Vis and XPS spectroscopy. Their crystal structures were solved by single-crystal X-ray diffraction. The supramolecular self-assembly of the two complexes is governed by non-classical C-H⋯N hydrogen bonds and C-H⋯π interactions. Lattice energies and intermolecular interaction energies for various molecular pairs are quantified using the PIXEL method. DFT computational studies to assess the binding energy through modern tools like non-covalent interaction (NCI plots) analysis and reduced density gradient (RDG) analysis have also been carried out. A detailed analysis of geometric descriptors revealed the existence of quasi-isostructural pairs or 'main-part' isostructuralism in a series formed by 1, 2, and a related cadmium complex, being more evident in the 1/2 pair. DFT studies using theoretical models have been used to disclose the relative importance of the H-bond and C-H⋯π noncovalent interactions. Magnetic measurements for compound 1 show weak ferrimagnetic coupling between adjacent M(II) centers, mediated by H-bonding and C-H⋯π non-covalent interactions.

2.
RSC Adv ; 8(42): 23891-23902, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-35540273

ABSTRACT

Four new thiocyanate-Zn(ii) and -Cd(ii) complexes with 1-methylimidazole (1-MeIm) and 2-methylimidazole (2-MeIm), namely, Zn(1-MeIm)2(SCN)2 (1), Zn(2-MeIm)2(SCN)2 (2), Cd(1-MeIm)4(SCN)2 (3) and polymeric [Cd(2-MeIm)2(SCN)2] n (4), have been synthesized and characterized by IR, Raman and UV-Vis spectroscopy. The thermal behavior for all complexes was evaluated by thermo-gravimetric analysis and differential thermal analysis. The crystal structures of complexes 1-4 were solved by single-crystal X-ray diffraction methods. A study of intermolecular interactions in the solid state compounds revealed that molecules are linked by weak N-H⋯S and C-H⋯S hydrogen bonds and also by C-H⋯π interaction in the case of structures 2-4, which are responsible for the formation and stability of the molecular assemblies. Hirshfeld surfaces and 2D-fingerprint plots allowed us to visualize the intermolecular contacts and their relative contributions to the total surface for each compound. A comparative analysis against similar halogen-bonded complexes was carried out to investigate the tendency of inter-molecular interactions to form contacts in crystals by using the enrichment ratio descriptor. The emission spectra of the free imidazole derivatives and their Zn(ii) and Cd(ii) complexes were recorded in acetonitrile solutions. The emissions observed in the spectra of complexes were ascribed to the intra-ligand transitions and ligand-to-metal charge transfer and we have observed an interesting correlation between the fluorescence intensities and C-H⋯π interactions.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 635-43, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25448963

ABSTRACT

The experimental and theoretical study on the molecular structure and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde (DMABA) is presented. The IR and Raman spectra were recorded in solid state. Optimized geometry, vibrational frequencies and various thermodynamic parameters of the title compound were calculated using DFT methods and are in agreement with the experimental values. A detailed interpretation of the IR and Raman spectra of the title compound were reported. The stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using NBO analysis and AIM approach. The HOMO and LUMO analysis were used to determine the charge transfer within the molecule and some molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, hardness, softness and global electrophilicity index. The TD-DFT approach was applied to assign the electronic transitions observed in the UV-visible spectrum measured experimentally. Molecular electrostatic potential map was performed by the DFT method. According to DSC measurements, the substance presents a melting point of 72.34°C and decomposes at temperatures higher than 193°C.


Subject(s)
Benzaldehydes/chemistry , Methylation , Models, Molecular , Quantum Theory , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Static Electricity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...