Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Sci Robot ; 4(34)2019 Sep 18.
Article in English | MEDLINE | ID: mdl-33137777

ABSTRACT

Tuna and related scombrid fishes are high-performance swimmers that often operate at high frequencies, especially during behaviors such as escaping from predators or catching prey. This contrasts with most fish-like robotic systems that typically operate at low frequencies (< 2 hertz). To explore the high-frequency fish swimming performance space, we designed and tested a new platform based on yellowfin tuna (Thunnus albacares) and Atlantic mackerel (Scomber scombrus). Body kinematics, speed, and power were measured at increasing tail beat frequencies to quantify swimming performance and to study flow fields generated by the tail. Experimental analyses of freely swimming tuna and mackerel allow comparison with the tuna-like robotic system. The Tunabot (255 millimeters long) can achieve a maximum tail beat frequency of 15 hertz, which corresponds to a swimming speed of 4.0 body lengths per second. Comparison of midline kinematics between scombrid fish and the Tunabot shows good agreement over a wide range of frequencies, with the biggest discrepancy occurring at the caudal fin, primarily due to the rigid propulsor used in the robotic model. As frequency increases, cost of transport (COT) follows a fish-like U-shaped response with a minimum at ~1.6 body lengths per second. The Tunabot has a range of ~9.1 kilometers if it swims at 0.4 meter per second or ~4.2 kilometers at 1.0 meter per second, assuming a 10-watt-hour battery pack. These results highlight the capabilities of high-frequency biological swimming and lay the foundation to explore a fish-like performance space for bio-inspired underwater vehicles.

2.
J Fish Biol ; 78(1): 195-207, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21235555

ABSTRACT

The effects of post-feeding thermotaxis on ileum evacuation and absorption rates were examined in the laboratory using two elasmobranch species, the Atlantic stingray Dasyatis sabina, which inhabits thermally variable environments, and the whitespotted bamboo shark Chiloscyllium plagiosum, a stenothermic fish living on Indo-Pacific reefs. Experiments at temperatures similar to those experienced in nature revealed temperature change had no significant effect on C. plagiosum absorption or evacuation rates, suggesting stenothermic sharks cannot exploit temperature differences as a means to improve digestion efficiency. On the other hand, D. sabina showed significantly lower evacuation and absorption rates at lower temperatures. The relative decrease was greater for evacuation (Q10 = 3·08) than absorption rates (Q10 = 2·20), resulting in a significant increase in total absorption, suggesting D. sabina can benefit from using shuttling behaviour to exploit thermal variability in their environment to maximize energetic uptake.


Subject(s)
Behavior, Animal , Digestion , Sharks/physiology , Skates, Fish/physiology , Temperature , Animals , Body Size
SELECTION OF CITATIONS
SEARCH DETAIL
...