Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 394: 130266, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159815

ABSTRACT

A recycled-gas closed-circuit culture system was developed for safe autotrophic cultivation of a hydrogen-oxidizing, polyhydroxyalkanoate (PHA)-producing Ralstonia eutropha, using a non-combustible gas mixture with low-concentration of H2 supplied by water electrolysis. Automated feedback regulation of gas flow enabled input of H2, CO2, and O2 well balanced with the cellular demands, leading to constant gas composition throughout the cultivation. The engineered strain of R. eutropha produced 1.71 g/L of poly(3-hydroxybutyrate-co-12.5 mol% 3-hydroxyhexanoate) on a gas mixture of H2/CO2/O2/N2 = 4:12:7:77 vol% with a 69.2 wt% cellular content. Overexpression of can encoding cytosolic carbonic anhydrase increased the 3HHx fraction up to 19.6 mol%. The yields of biomass and PHA on input H2 were determined to be 72.9 % and 63.1 %, corresponding to 51.0 % and 44.2 % yield on electricity, respectively. The equivalent solar-to-biomass/PHA efficiencies were estimated to be 2.1-3.8 %, highlighting the high energy conversion capability of R. eutropha.


Subject(s)
Caproates , Cupriavidus necator , Polyhydroxyalkanoates , Fermentation , Cupriavidus necator/genetics , Carbon Dioxide , Gases , Electrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...