Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 14(4): 1385-1396, 2021 07.
Article in English | MEDLINE | ID: mdl-33300676

ABSTRACT

Methylotrophs, which can utilize methanol as a sole carbon source, are promising microorganisms to be exploited in a methanol-based bioeconomy, in which a variety of useful compounds are biotechnologically produced from natural gas-derived methanol. Pink-pigmented facultative methylotrophs (PPFMs) are common plant phyllospheric bacteria and are known to enhance seedling growth and total biomass of various plants. However, improvement of crop yield by inoculation of PPFMs at the field level has not been well investigated. We herein describe improvement of crop yield of several rice cultivars by foliar spraying of PPFMs. After selection of PPFM strains and rice cultivars by the in vitro seedling growth test, we further conducted paddy field experiments. The crop yield of the sake-brewing rice Oryza sativa cultivar Hakutsurunishiki was reproducibly improved in a commercial paddy field for over a 5-year period. A one-time foliar spray of PPFM cells (living or killed) or a cell wall polysaccharide fraction, after the heading date, acted in the phyllosphere and effectively improved crop yield. Our results show that the established process with PPFMs is feasible for improvement of food production in the methanol bioeconomy.


Subject(s)
Oryza , Bacteria , Carbon , Methanol , Natural Gas
2.
Acta Biomater ; 48: 58-67, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27756647

ABSTRACT

Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor therapy is promising, the retention in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Here, we demonstrated the use of polyethylene glycol-fibrinogen (PF) hydrogels for sustained dual delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (ANG-1) to enhance myocardial repair and function. VEGF and ANG-1 were incorporated in PF hydrogels and their in vitro characteristics were studied. Acute MI was generated in a rodent model with rats randomly assigned to 4 groups; sham, saline, PF and PF-VEGF-ANG1 (n=10 each group). Saline or hydrogel was injected in infarct and peri-infarct areas of the myocardium. After 4weeks, myocardial function was assessed using echocardiography. Tissue samples were harvested for Hematoxylin and Eosin, Masson Trichrome and capillary staining to assess the extent of fibrotic scar and arteriogenesis. Both VEGF and ANG-1 were released in a sustained and controlled manner over 30days. PF-VEGF-ANG1 treated animals showed the best improvement in cardiac function, highest degree of cardiac muscle preservation, and arteriogenesis. This study demonstrates that PF hydrogels can simultaneously provide mechanical support to attenuate adverse myocardial remodelling, and a pro-angiogenic benefit from the sustained VEGF and ANG1 delivery that culminates in a restorative effect following MI. The utility of this synergistic, biomaterial-based growth factor delivery may have clinical implications in the prevention of post-MI cardiac dysfunction. STATEMENT OF SIGNIFICANCE: Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. Here, we demonstrated the use of polyethylene glycol-fibrinogen (PF) hydrogels for sustained dual delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (ANG-1) to enhance myocardial repair and function. Treated animals showed the best improvement in cardiac function, highest degree of cardiac muscle preservation, and arteriogenesis. This study demonstrates that PF hydrogels can simultaneously provide mechanical support to attenuate adverse myocardial remodelling, and a pro-angiogenic benefit from the sustained VEGF and ANG1 delivery that culminates in a restorative effect following MI.


Subject(s)
Angiopoietin-1/administration & dosage , Angiopoietin-1/therapeutic use , Drug Delivery Systems/methods , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Myocardial Ischemia/drug therapy , Myocardium/pathology , Vascular Endothelial Growth Factor A/administration & dosage , Vascular Endothelial Growth Factor A/therapeutic use , Angiopoietin-1/pharmacology , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Fibrinogen/chemistry , Fluorescent Antibody Technique , Heart Function Tests , Hemodynamics/drug effects , Humans , Kinetics , Male , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Polyethylene Glycols/chemistry , Rats, Wistar , Staining and Labeling , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...