Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 95(2-1): 022140, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28297937

ABSTRACT

Networks with memristive elements (resistors with memory) are being explored for a variety of applications ranging from unconventional computing to models of the brain. However, analytical results that highlight the role of the graph connectivity on the memory dynamics are still few, thus limiting our understanding of these important dynamical systems. In this paper, we derive an exact matrix equation of motion that takes into account all the network constraints of a purely memristive circuit, and we employ it to derive analytical results regarding its relaxation properties. We are able to describe the memory evolution in terms of orthogonal projection operators onto the subspace of fundamental loop space of the underlying circuit. This orthogonal projection explicitly reveals the coupling between the spatial and temporal sectors of the memristive circuits and compactly describes the circuit topology. For the case of disordered graphs, we are able to explain the emergence of a power-law relaxation as a superposition of exponential relaxation times with a broad range of scales using random matrices. This power law is also universal, namely independent of the topology of the underlying graph but dependent only on the density of loops. In the case of circuits subject to alternating voltage instead, we are able to obtain an approximate solution of the dynamics, which is tested against a specific network topology. These results suggest a much richer dynamics of memristive networks than previously considered.

2.
Sci Rep ; 7: 42044, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28195193

ABSTRACT

Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

3.
J Phys Condens Matter ; 29(6): 063001, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27991434

ABSTRACT

We review the progress that has been recently made in the application of time-dependent density functional theory to thermoelectric phenomena. As the field is very young, we emphasize open problems and fundamental issues. We begin by introducing the formal structure of thermal density functional theory, a density functional theory with two basic variables-the density and the energy density-and two conjugate fields-the ordinary scalar potential and Luttinger's thermomechanical potential. The static version of this theory is contrasted with the familiar finite-temperature density functional theory, in which only the density is a variable. We then proceed to constructing the full time-dependent non equilibrium theory, including the practically important Kohn-Sham equations that go with it. The theory is shown to recover standard results of the Landauer theory for thermal transport in the steady state, while showing greater flexibility by allowing a description of fast thermal response, temperature oscillations and related phenomena. Several results are presented here for the first time, i.e. the proof of invertibility of the thermal response function in the linear regime, the full expression of the thermal currents in the presence of Luttinger's thermomechanical potential, an explicit prescription for the evaluation of the Kohn-Sham potentials in the adiabatic local density approximation, a detailed discussion of the leading dissipative corrections to the adiabatic local density approximation and the thermal corrections to the resistivity that follow from it.

4.
Sci Rep ; 6: 29507, 2016 07 06.
Article in English | MEDLINE | ID: mdl-27381511

ABSTRACT

Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.

6.
Nanotechnology ; 26(22): 225201, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25966017

ABSTRACT

We show theoretically that networks of membrane memcapacitive systems-capacitors with memory made out of membrane materials-can be used to perform a complete set of logic gates in a massively parallel way by simply changing the external input amplitudes, but not the topology of the network. This polymorphism is an important characteristic of memcomputing (computing with memories) that closely reproduces one of the main features of the brain. A practical realization of these membrane memcapacitive systems, using, e.g., graphene or other 2D materials, would be a step forward towards a solid-state realization of memcomputing with passive devices.

7.
Nanotechnology ; 25(28): 285201, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24972387

ABSTRACT

The present von Neumann computing paradigm involves a significant amount of information transfer between a central processing unit and memory, with concomitant limitations in the actual execution speed. However, it has been recently argued that a different form of computation, dubbed memcomputing (Di Ventra and Pershin 2013 Nat. Phys. 9 200-2) and inspired by the operation of our brain, can resolve the intrinsic limitations of present day architectures by allowing for computing and storing of information on the same physical platform. Here we show a simple and practical realization of memcomputing that utilizes easy-to-build memcapacitive systems. We name this architecture dynamic computing random access memory (DCRAM). We show that DCRAM provides massively-parallel and polymorphic digital logic, namely it allows for different logic operations with the same architecture, by varying only the control signals. In addition, by taking into account realistic parameters, its energy expenditures can be as low as a few fJ per operation. DCRAM is fully compatible with CMOS technology, can be realized with current fabrication facilities, and therefore can really serve as an alternative to the present computing technology.


Subject(s)
Equipment Design/instrumentation , Equipment Design/methods , Computer Systems , Quantum Theory
8.
Phys Rev Lett ; 112(19): 196401, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24877951

ABSTRACT

We introduce a nonequilibrium density-functional theory of local temperature and associated local energy density that is suited for the study of thermoelectric phenomena. The theory rests on a local temperature field coupled to the energy-density operator. We identify the excess-energy density, in addition to the particle density, as the basic variable, which is reproduced by an effective noninteracting Kohn-Sham system. A novel Kohn-Sham equation emerges featuring a time-dependent and spatially varying mass which represents local temperature variations. The adiabatic contribution to the Kohn-Sham potentials is related to the entropy viewed as a functional of the particle and energy density. Dissipation can be taken into account by employing linear response theory and the thermoelectric transport coefficients of the electron gas.

9.
Sci Rep ; 4: 4221, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24573177

ABSTRACT

Heating in nanoscale systems driven out of equilibrium is of fundamental importance, has ramifications for technological applications, and is a challenge to characterize experimentally. Prior experiments using nanoscale junctions have largely focused on heating of ionic degrees of freedom, while heating of the electrons has been mostly neglected. We report measurements in atomic-scale Au break junctions, in which the bias-driven component of the current noise is used as a probe of the electronic distribution. At low biases (<150 mV) the noise is consistent with expectations of shot noise at a fixed electronic temperature. At higher biases, a nonlinear dependence of the noise power is observed. We consider candidate mechanisms for this increase, including flicker noise (due to ionic motion), heating of the bulk electrodes, nonequilibrium electron-phonon effects, and local heating of the electronic distribution impinging on the ballistic junction. We find that flicker noise and bulk heating are quantitatively unlikely to explain the observations. We discuss the implications of these observations for other nanoscale systems, and experimental tests to distinguish vibrational and electron interaction mechanisms for the enhanced noise.

10.
Phys Rev Lett ; 111(21): 216804, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24313513

ABSTRACT

We study the effect of volumetric constraints on the structure and electronic transport properties of distilled water in a nanopore with embedded electrodes. Combining classical molecular dynamics simulations with quantum scattering theory, we show that the structural motifs water exhibits inside the pore can be probed directly by tunneling. In particular, we show that the current does not follow a simple exponential curve at a critical pore diameter of about 8 Å, rather it is larger than the one expected from simple tunneling through a barrier. This is due to a structural transition from bulklike to "nanodroplet" water domains. Our results can be tested with present experimental capabilities to develop our understanding of water as a complex medium at nanometer length scales.


Subject(s)
Models, Chemical , Nanopores , Silicon Compounds/chemistry , Water/chemistry , Models, Molecular
11.
J Phys Chem B ; 117(46): 14408-19, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24147662

ABSTRACT

We developed an approach for calculating excitation-energy transfer times in supermolecular arrangements based on stochastic time-dependent density functional theory (STDDFT). The combination of real-time propagation and the stochastic Schrödinger equation with a Kohn-Sham Hamiltonian allows for simulating how an excitation spreads through an assembly of molecular systems. The influence that approximations, such as the dipole-dipole coupling approximation of Förster theory, have on energy-transfer times can be checked explicitly. As a first application of our approach we investigate a light-harvesting-inspired model ring system, calculating the time it takes for an excitation to travel from one side of the ring to the opposite side under ideal and perturbed conditions. Among other things we find that completely removing a molecule from the ring may inhibit energy transfer less than having an energetically detuned molecule in the ring. In addition, Förster's dipole coupling approximation may noticeably overestimate excitation-energy transfer efficiency.

12.
Nanotechnology ; 24(38): 384001, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23999022

ABSTRACT

Electronic realizations of neurons are of great interest as building blocks for neuromorphic computation. Electronic neurons should send signals into the input and output lines when subject to an input signal exceeding a given threshold, in such a way that they may affect all other parts of a neural network. Here, we propose a design for a neuron that is based on molecular-electronics components and thus promises a very high level of integration. We employ the Monte Carlo technique to simulate typical time evolutions of this system and thereby show that it indeed functions as a neuron.


Subject(s)
Electronics/instrumentation , Models, Neurological , Nanotechnology/instrumentation , Neurons/physiology , Computer Simulation , Monte Carlo Method , Neural Networks, Computer
13.
Nanotechnology ; 24(41): 415101, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24061386

ABSTRACT

We suggest the discrimination of single DNA bases via transverse ionic transport, namely by detecting the ionic current that flows in a channel while a single-stranded DNA is driven through an intersecting nanochannel. Our all-atom molecular dynamics simulations indeed show that the ionic currents of the four bases are statistically distinct, thus offering another possible approach to sequencing DNA.


Subject(s)
DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Ions/metabolism , Base Sequence , Ion Transport , Molecular Dynamics Simulation , Nucleic Acid Conformation
14.
Phys Rev Lett ; 109(11): 118301, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-23005684

ABSTRACT

The advent of solid state nanodevices allows for interrogating the physicochemical properties of a polyelectrolyte chain by electrophoretically driving it through a nanopore. Salient dynamical aspects of the translocation process have been recently characterized by theoretical and computational studies of model polymer chains free from self-entanglement. However, sufficiently long equilibrated chains are necessarily knotted. The impact of such topological "defects" on the translocation process is largely unexplored, and is addressed in this Letter. By using Brownian dynamics simulations on a coarse-grained polyelectrolyte model we show that knots, despite being trapped at the pore entrance, do not per se cause the translocation process to jam. Rather, knots introduce an effective friction that increases with the applied force, and practically halts the translocation above a threshold force. The predicted dynamical crossover, which is experimentally verifiable, ought to be relevant in applicative contexts, such as DNA nanopore sequencing.


Subject(s)
Electrolytes/chemistry , Models, Chemical , Nanopores/ultrastructure , Polymers/chemistry , DNA, Single-Stranded/chemistry , Electrophoresis , Models, Molecular , Thermodynamics
15.
Science ; 325(5947): 1518-21, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19696311

ABSTRACT

The resonant elements that grant metamaterials their distinct properties have the fundamental limitation of restricting their useable frequency bandwidth. The development of frequency-agile metamaterials has helped to alleviate these bandwidth restrictions by allowing real-time tuning of the metamaterial frequency response. We demonstrate electrically controlled persistent frequency tuning of a metamaterial, which allows the lasting modification of its response by using a transient stimulus. This work demonstrates a form of memory capacitance that interfaces metamaterials with a class of devices known collectively as memory devices.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 1): 042101, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19518279

ABSTRACT

The onset of Fourier's law in a one-dimensional quantum system is addressed via a simple model of weakly coupled quantum systems in contact with thermal baths at their edges. Using analytical arguments we show that the crossover from the ballistic (invalid Fourier's law) to diffusive (valid Fourier's law) regimes is characterized by a thermal length scale, which is directly related to the profile of the local temperature. In the same vein, dephasing is shown to give rise to classical Fourier's law, similarly to the onset of Ohm's law in mesoscopic conductors.

17.
Phys Rev Lett ; 99(1): 016403, 2007 Jul 06.
Article in English | MEDLINE | ID: mdl-17678172

ABSTRACT

We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m* comparable to free electron mass. Furthermore, the m* values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.

18.
Nano Lett ; 6(2): 224-8, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16464039

ABSTRACT

We report on infrared (IR) spectromicroscopy of the electronic excitations in nanometer-thick accumulation layers in field-effect transistor (FET) devices based on poly(3-hexylthiophene). IR data allows us to explore the charge injection landscape and uncovers the critical role of the gate insulator in defining relevant length scales. This work demonstrates the unique potential of IR spectroscopy for the investigation of physical phenomena at the nanoscale occurring at the semiconductor-insulator interface in FET devices.


Subject(s)
Membranes, Artificial , Nanotechnology/instrumentation , Nanotechnology/methods , Spectrophotometry, Infrared/methods , Thiophenes/chemistry , Chemical Phenomena , Chemistry, Physical , Equipment Design , Particle Size , Sensitivity and Specificity , Spectrophotometry, Infrared/instrumentation , Surface Properties , Titanium/chemistry , Transistors, Electronic
19.
Phys Rev Lett ; 92(17): 176803, 2004 Apr 30.
Article in English | MEDLINE | ID: mdl-15169179

ABSTRACT

The expression for the force on an ion in the presence of current can be derived from first principles without any assumption about its conservative character. However, energy functionals have been constructed that indicate that this force can be written as the derivative of a potential. On the other hand, there exist specific arguments that strongly suggest the contrary. We propose physical mechanisms that invalidate such arguments and demonstrate their existence with first-principles calculations. While our results do not constitute a formal resolution to the fundamental question of whether current-induced forces are conservative, they represent a substantial step forward in this direction.

20.
Phys Rev Lett ; 88(4): 046801, 2002 Jan 28.
Article in English | MEDLINE | ID: mdl-11801149

ABSTRACT

We report first-principles calculations of current-induced forces in molecular wires for which experiments are available. We investigate, as an example, the effect of current-induced forces on a benzene molecule connected to two bulk electrodes via sulfur end groups. We find that the molecule twists around an axis perpendicular to its plane and undergoes a "breathing" oscillation at resonant tunneling via antibonding states. However, current-induced forces do not substantially affect the absolute value of the current for biases as high as 5 V, suggesting that molecular wires can operate at very large electric fields without current-induced breakdown.

SELECTION OF CITATIONS
SEARCH DETAIL
...