Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 11(1): 34, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882863

ABSTRACT

Mutations in the solute carrier family 6-member 8 (Slc6a8) gene, encoding the protein responsible for cellular creatine (Cr) uptake, cause Creatine Transporter Deficiency (CTD), an X-linked neurometabolic disorder presenting with intellectual disability, autistic-like features, and epilepsy. The pathological determinants of CTD are still poorly understood, hindering the development of therapies. In this study, we generated an extensive transcriptomic profile of CTD showing that Cr deficiency causes perturbations of gene expression in excitatory neurons, inhibitory cells, and oligodendrocytes which result in remodeling of circuit excitability and synaptic wiring. We also identified specific alterations of parvalbumin-expressing (PV+) interneurons, exhibiting a reduction in cellular and synaptic density, and a hypofunctional electrophysiological phenotype. Mice lacking Slc6a8 only in PV+ interneurons recapitulated numerous CTD features, including cognitive deterioration, impaired cortical processing and hyperexcitability of brain circuits, demonstrating that Cr deficit in PV+ interneurons is sufficient to determine the neurological phenotype of CTD. Moreover, a pharmacological treatment targeted to restore the efficiency of PV+ synapses significantly improved cortical activity in Slc6a8 knock-out animals. Altogether, these data demonstrate that Slc6a8 is critical for the normal function of PV+ interneurons and that impairment of these cells is central in the disease pathogenesis, suggesting a novel therapeutic venue for CTD.


Subject(s)
Brain Diseases, Metabolic, Inborn , Membrane Transport Proteins , Parvalbumins , Animals , Mice , Creatine , Neurons , Membrane Transport Proteins/genetics
2.
Genes (Basel) ; 12(8)2021 07 24.
Article in English | MEDLINE | ID: mdl-34440297

ABSTRACT

Creatine (Cr) Transporter Deficiency (CTD) is an X-linked metabolic disorder, mostly caused by missense mutations in the SLC6A8 gene and presenting with intellectual disability, autistic behavior, and epilepsy. There is no effective treatment for CTD and patients need lifelong assistance. Thus, the research of novel intervention strategies is a major scientific challenge. Animal models are an excellent tool to dissect the disease pathogenetic mechanisms and drive the preclinical development of therapeutics. This review illustrates the current knowledge about Cr metabolism and CTD clinical aspects, with a focus on mainstay diagnostic and therapeutic options. Then, we discuss the rodent models of CTD characterized in the last decade, comparing the phenotypes expressed within clinically relevant domains and the timeline of symptom development. This analysis highlights that animals with the ubiquitous deletion/mutation of SLC6A8 genes well recapitulate the early onset and the complex pathological phenotype of the human condition. Thus, they should represent the preferred model for preclinical efficacy studies. On the other hand, brain- and cell-specific conditional mutants are ideal for understanding the basis of CTD at a cellular and molecular level. Finally, we explain how CTD models might provide novel insight about the pathogenesis of other disorders, including cancer.


Subject(s)
Brain Diseases, Metabolic, Inborn/pathology , Brain Diseases, Metabolic, Inborn/therapy , Central Nervous System/pathology , Creatine/deficiency , Disease Models, Animal , Mental Retardation, X-Linked/pathology , Mental Retardation, X-Linked/therapy , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Animals , Biomarkers/metabolism , Brain Diseases, Metabolic, Inborn/metabolism , Creatine/metabolism , Humans , Mental Retardation, X-Linked/metabolism , Mice , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...