Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
ACS Med Chem Lett ; 14(5): 645-651, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37197453

ABSTRACT

Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is the first reported nonreceptor oncogenic tyrosine phosphatase connecting multiple signal transduction cascades and exerting immunoinhibitory function through the PD-1 checkpoint receptor. As part of a drug discovery program aimed at obtaining novel allosteric SHP2 inhibitors, a series of pyrazopyrazine derivatives bearing an original bicyclo[3.1.0]hexane basic moiety on the left-hand side region of the molecule were identified. We report herein the discovery process, the in vitro pharmacological profile, and the early developability features of compound 25, one of the most potent members of the series.

2.
Bioorg Med Chem Lett ; 73: 128904, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35868496

ABSTRACT

Chronic hepatitis B (CHB) is a major worldwide public health problem and novel anti-HBV therapies preventing liver disease progression to cirrhosis and hepatocellular carcinoma are urgently needed. Over the last several years, capsid assembly modulators (CAM) have emerged as clinically effective anti-HBV agents which can inhibit HBV replication in CHB patients. As part of a drug discovery program aimed at obtaining novel CAM endowed with high in vitro and in vivo antiviral activity, we identified a novel series of sulfamoylbenzamide (SBA) derivatives. Compound 10, one of the most in vitro potent SBA-derived CAM discovered to date, showed excellent pharmacokinetics in mice suitable for oral dosing. When studied in a transgenic mouse model of hepatic HBV replication, it was considerably more potent than NVR 3-778, the first sulfamoylbenzamide (SBA) CAM that entered clinical trials for CHB, at reducing viral replication in a dose-dependent fashion. We present herein the discovery process, the SAR analysis and the pre-clinical profile of this novel SBA CAM.


Subject(s)
Antiviral Agents , Capsid , Animals , Antiviral Agents/pharmacokinetics , Capsid Proteins , Hepatitis B virus , Mice , Virus Assembly , Virus Replication
3.
Bioorg Med Chem Lett ; 72: 128858, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35718104

ABSTRACT

A new series of in vitro potent and highly selective histone methyl transferase enzyme G9a inhibitors was obtained. In particular, compound 2a, one the most potent G9a inhibitor identified, was endowed with >130-fold selectivity over GLP and excellent ligand efficiency. Therefore, it may represent a valuable tool compound to validate the role of highly selective G9a inhibitors in different pathological conditions. When 2a was characterized in vitro in cellular models of skeletal muscle differentiation, a relevant increase of myofibers' size and reduction of the fibroadipogenic infiltration were observed, further confirming the therapeutic potential of selective G9a inhibitors for the treatment of Duchenne muscle dystrophy.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Enzyme Inhibitors/pharmacology
4.
Sci Adv ; 7(23)2021 06.
Article in English | MEDLINE | ID: mdl-34078594

ABSTRACT

H3K9 methylation maintains cell identity orchestrating stable silencing and anchoring of alternate fate genes within the heterochromatic compartment underneath the nuclear lamina (NL). However, how cell type-specific genomic regions are specifically targeted to the NL is still elusive. Using fibro-adipogenic progenitors (FAPs) as a model, we identified Prdm16 as a nuclear envelope protein that anchors H3K9-methylated chromatin in a cell-specific manner. We show that Prdm16 mediates FAP developmental capacities by orchestrating lamina-associated domain organization and heterochromatin sequestration at the nuclear periphery. We found that Prdm16 localizes at the NL where it cooperates with the H3K9 methyltransferases G9a/GLP to mediate tethering and silencing of myogenic genes, thus repressing an alternative myogenic fate in FAPs. Genetic and pharmacological disruption of this repressive pathway confers to FAP myogenic competence, preventing fibro-adipogenic degeneration of dystrophic muscles. In summary, we reveal a druggable mechanism of heterochromatin perinuclear sequestration exploitable to reprogram FAPs in vivo.

5.
ACS Med Chem Lett ; 10(4): 627-632, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30996808

ABSTRACT

Acid-sensing ion channels (ASICs) are a family of ion channels permeable to cations and largely responsible for the onset of acid-evoked ion currents both in neurons and in different types of cancer cells, thus representing a potential target for drug discovery. Owing to the limited attention ASIC2 has received so far, an exploratory program was initiated to identify ASIC2 inhibitors using diminazene, a known pan-ASIC inhibitor, as a chemical starting point for structural elaboration. The performed exploration enabled the identification of a novel series of ASIC2 inhibitors. In particular, compound 2u is a brain penetrant ASIC2 inhibitor endowed with an optimal pharmacokinetic profile. This compound may represent a useful tool to validate in animal models in vivo the role of ASIC2 in different neurodegenerative central nervous system pathologies.

6.
ChemMedChem ; 12(23): 1917-1926, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29117473

ABSTRACT

Since the time of its identification, the natural compound largazole rapidly caught the attention of the medicinal chemistry community for its impressive potency as an inhibitor of histone deacetylases (HDACs) and its strong antiproliferative activity against a broad panel of cancer cell lines. The design of largazole analogues is an expanding field of study, due to their remarkable potential as novel anticancer therapeutics. At present, a large ensemble of largazole analogues has been reported, allowing the identification of important structure-activity relationships (SAR) that can guide the design of novel compounds with improved HDAC inhibitory profiles, anticancer activity, and pharmacokinetic properties. The aim of this review is to concisely summarize the information obtained by biological evaluations of the various largazole analogues reported to date, with particular attention given to the latest analogues, as well as to analyze the various SAR obtained from this data, with the purpose of providing useful guidelines for the development of novel potent and selective HDAC inhibitors to be used as anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Depsipeptides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Thiazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Depsipeptides/chemical synthesis , Depsipeptides/chemistry , Dose-Response Relationship, Drug , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Humans , Molecular Conformation , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
7.
Org Lett ; 17(3): 398-401, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25629303

ABSTRACT

The preparation of 3-substituted tetrahydropyrazinoisoquinolines using the tributyltin hydride mediated intramolecular radical cyclization of suitably protected 2-substituted 3,4-dihydropyrazines is reported. The compounds are obtained as single enantiomers, as the relative configuration of the new generated stereogenic center is driven by the stereochemistry of the 2-substituted carbon in the starting materials, which is in turn derived from naturally occurring amino acids.


Subject(s)
Heterocyclic Compounds, 3-Ring/chemical synthesis , Isoquinolines/chemical synthesis , Pyrazines/chemistry , Pyrazines/chemical synthesis , Amino Acids/chemistry , Catalysis , Cyclization , Heterocyclic Compounds, 3-Ring/chemistry , Isoquinolines/chemistry , Molecular Structure , Stereoisomerism
8.
Bioorg Med Chem ; 21(21): 6264-73, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24075145

ABSTRACT

The last two decades have provided a large weight of preclinical data implicating the neurokinin-1 receptor (NK1) and its cognate ligand substance P (SP) in a broad range of both central and peripheral disease conditions. However, to date, only the NK1 receptor antagonist aprepitant has been approved as a therapeutic and this is to prevent chemotherapy-induced nausea & vomiting (CINV). The belief remained that the full therapeutic potential of NK1 receptor antagonists had yet to be realized; therefore clinical evidence that NK1 receptor antagonists may be effective in major depression disorder, resulted in a significant further investment in discovering novel CNS penetrant druggable NK1 receptor antagonists to address this condition. At GlaxoSmithKline after the discovery of casopitant, that went on to demonstrate efficacy as a novel antidepressant in the clinic, additional novel analogues of this NK1 receptor antagonist were designed to further enhance its drug developability characteristics. Herein, we therefore describe the discovery process and the vivo pharmacological and pharmacokinetic profile of the new NK1 receptor antagonist 3a (also called orvepitant), selected as clinical candidate and further progressed into clinical studies for major depressive disorder. Moreover, molecular modeling studies enabled us to improve the pharmacophore model of the NK1 receptor antagonists with the identification of a region able to accommodate a variety of heterocycle moieties.


Subject(s)
Antidepressive Agents/chemistry , Neurokinin-1 Receptor Antagonists/chemistry , Receptors, Neurokinin-1/chemistry , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/pharmacokinetics , Behavior, Animal/drug effects , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , CHO Cells , Cricetinae , Cricetulus , Dogs , Female , Gerbillinae , Half-Life , Humans , Male , Models, Molecular , Molecular Conformation , Neurokinin-1 Receptor Antagonists/chemical synthesis , Neurokinin-1 Receptor Antagonists/pharmacokinetics , Piperazines/chemistry , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacokinetics , Protein Binding , Rats , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism
9.
Eur J Pharmacol ; 692(1-3): 1-9, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-22796453

ABSTRACT

In this work the pharmacology and the receptor kinetics of the following orexin receptor antagonists SB-649868, ACT-078573, JNJ-10397049, MK-6096 and Roche-Cp were evaluated at human OX(1) and OX(2) orexin receptors by using functional and receptor binding assays. Kinetic analysis of the unlabeled ligands was carried out by indirect measurement according to the Motulski and Mahan's method as opposed to the direct measure by using labeled test compounds. All compounds antagonized orexin-A-induced inositol 1 phosphate (IP1) accumulation with the following pK(B) values: SB-649868 (OX(1)=9.67; OX(2)=9.64), ACT-078573 (OX(1)=8.44; OX(2)=9.02), JNJ-10397049 (OX(1)=5.97; OX(2)=8.35), MK-6096 (OX(1)=9.13; OX(2)=9.79) and Roche-Cp (OX(1)=7.18; OX(2)=8.83). They displaced the [(3)H]ACT-078573 receptor binding with the following pK(i) values: SB-649868 (OX(1)=9.27; OX(2)=8.91), ACT-078573 (OX(1)=7.80; OX(2)=9.12), JNJ-10397049 (OX(1)=5.18; OX(2)=8.10), MK-6096 (OX(1)=8.39; OX(2)=8.90) and Roche-Cp (OX(1)=6.65; OX(2)=8.54). From dissociation kinetic studies using [(3)H]ACT-078573, the calculated long half-life, (t(½)) supported the non-surmountability profile of SB-649868 (t(½)=35.91min) at OX(1) orexin receptor. Similarly, the long or moderately long t(½) values for ACT-078573 at OX(2) orexin receptor (t(½)=69.71min), MK-6096 (t(½)=17.70min), SB-649868 (t(½)=8.09min) and Roche-Cp (t(½)=5.79min) sustained their non-surmountable profile. JNJ-10397049 showed short t(½) values at both receptor subtypes (OX(1)t(½)=0.19min; OX(2)t(½)=0.60min) with surmountable antagonism.


Subject(s)
Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/metabolism , Acetamides/metabolism , Acetamides/pharmacology , Animals , Benzofurans/metabolism , Benzofurans/pharmacology , Binding, Competitive , CHO Cells , Cricetinae , Cricetulus , Dioxanes/metabolism , Dioxanes/pharmacology , Humans , Isoquinolines/metabolism , Isoquinolines/pharmacology , Kinetics , Orexin Receptors , Phenylurea Compounds/metabolism , Phenylurea Compounds/pharmacology , Piperidines/metabolism , Piperidines/pharmacology , Protein Binding , Pyrimidines/metabolism , Pyrimidines/pharmacology , Thiazoles/metabolism , Thiazoles/pharmacology
10.
Neuropsychopharmacology ; 37(9): 1999-2011, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22569505

ABSTRACT

Orexins (OX) and their receptors (OXR) modulate feeding, arousal, stress, and drug abuse. Neural systems that motivate and reinforce drug abuse may also underlie compulsive food seeking and intake. Therefore, the effects of GSK1059865 (5-bromo-N-[(2S,5S)-1-(3-fluoro-2-methoxybenzoyl)-5-methylpiperidin-2-yl]methyl-pyridin-2-amine), a selective OX(1)R antagonist, JNJ-10397049 (N-(2,4-dibromophenyl)-N'-[(4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl]urea), a selective OX(2)R antagonist, and SB-649868 (N-[((2S)-1-{[5-(4-fluorophenyl)-2-methyl-1,3-thiazol-4-yl]carbonyl}-2-piperidinyl)methyl]-1-benzofuran-4-carboxamide), a dual OX(1)/OX(2)R antagonist were evaluated in a binge eating (BE) model in female rats. BE of highly palatable food (HPF) was evoked by three cycles of food restriction followed by stress, elicited by exposing rats to HPF, but preventing them from having access to it for 15 min. Pharmacokinetic assessments of all compounds were obtained under the same experimental conditions used for the behavioral experiments. Topiramate was used as the reference compound as it selectively blocks BE in rats and humans. Dose-related thresholds for sleep-inducing effects of the OXR antagonists were measured using polysomnography in parallel experiments. SB-649868 and GSK1059865, but not JNJ-10397049, selectively reduced BE for HPF without affecting standard food pellet intake, at doses that did not induce sleep. These results indicate, for the first time, a major role of OX(1)R mechanisms in BE, suggesting that selective antagonism at OX(1)R could represent a novel pharmacological treatment for BE and possibly other eating disorders with a compulsive component.


Subject(s)
Bulimia/metabolism , Compulsive Behavior , Eating/physiology , Receptors, G-Protein-Coupled/physiology , Receptors, Neuropeptide/physiology , Animals , Bulimia/drug therapy , Bulimia/psychology , Compulsive Behavior/drug therapy , Compulsive Behavior/psychology , Eating/drug effects , Eating/psychology , Female , Fructose/analogs & derivatives , Fructose/pharmacology , Fructose/therapeutic use , Intracellular Signaling Peptides and Proteins/pharmacology , Male , Neuropeptides/pharmacology , Orexin Receptors , Orexins , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/agonists , Receptors, Neuropeptide/antagonists & inhibitors , Reinforcement Schedule , Sex Factors , Topiramate , Tumor Cells, Cultured
12.
Bioorg Med Chem Lett ; 21(18): 5562-7, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21831639

ABSTRACT

The hypothalamic peptides orexin-A and orexin-B are potent agonists of two G-protein coupled receptors, namely the OX(1) and the OX(2) receptor. These receptors are widely distributed, though differentially, in the rat brain. In particular, the OX(1) receptor is highly expressed throughout the hypothalamus, whilst the OX(2) receptor is mainly located in the ventral posterior nucleus. A large body of compelling evidence, both pre-clinical and clinical, suggests that the orexin system is profoundly implicated in sleep disorders. In particular, modulation of the orexin receptors activation by appropriate antagonists was proven to be an efficacious strategy for the treatment of insomnia in man. A novel, drug-like bis-amido piperidine derivative was identified as potent dual OX(1) and OX(2) receptor antagonists, highly effective in a pre-clinical model of sleep.


Subject(s)
Drug Discovery , Piperidines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Sleep Wake Disorders/drug therapy , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Orexin Receptors , Piperidines/chemical synthesis , Piperidines/chemistry , Rats , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Stereoisomerism , Structure-Activity Relationship
13.
Bioorg Med Chem ; 19(11): 3451-61, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21550808
14.
J Med Chem ; 54(4): 1071-9, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21229983

ABSTRACT

A large body of compelling preclinical evidence supports the clinical use of neurokinin (NK) receptor antagonists in a plethora of CNS and non-CNS therapeutic areas. The significant investment made in this area over the past 2 decades culminated with the observation that NK(1) receptor antagonists elicited clinical efficacy in major depression disorders. In addition, aprepitant (Merck) was launched as a new drug able to prevent chemotherapy-induced nausea and vomiting (CINV). After the discovery by GlaxoSmithKline of vestipitant, a wide drug discovery program was launched aimed at identifying additional clinical candidates. New compounds were designed to maximize affinity at the NK(1) receptor binding site while retaining suitable physicochemical characteristics to ensure excellent pharmacokinetic and pharmacodynamic properties in vivo. Herein we describe the discovery process of a new NK(1) receptor antagonist (casopitant) selected as clinical candidate and progressed into clinical studies to treat major depression disorders.


Subject(s)
Brain/drug effects , Brain/metabolism , Depressive Disorder/drug therapy , Neurokinin-1 Receptor Antagonists , Piperazines/chemical synthesis , Piperazines/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Animals , Behavior, Animal/drug effects , CHO Cells , Cricetinae , Cricetulus , Depressive Disorder/metabolism , Drug Discovery , Gerbillinae , Half-Life , Humans , Magnetic Resonance Spectroscopy , Piperazines/chemistry , Piperazines/pharmacokinetics , Piperidines/chemistry , Piperidines/pharmacokinetics , Regression Analysis , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Infrared , Stereoisomerism
15.
Bioorg Med Chem Lett ; 21(1): 602-5, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21134748

ABSTRACT

Two complementary stereospecific synthetic approaches for the preparation of unsymmetrical ortho-substituted N-(4,4-diphenylbut-3-enyl) derivatives of nipecotic acid are described. Determination of the activity of the prepared compounds at the GAT-1 transporter highlighted differing SAR requirements of the E- and Z-phenyl rings, and led to the discovery of a compound with comparable potency to tiagabine. Some attempts to replace nipecotic acid with alternative novel amino acids are also described.


Subject(s)
GABA Plasma Membrane Transport Proteins/chemistry , GABA Uptake Inhibitors/chemical synthesis , Nipecotic Acids/chemical synthesis , GABA Plasma Membrane Transport Proteins/metabolism , GABA Uptake Inhibitors/chemistry , GABA Uptake Inhibitors/pharmacology , Nipecotic Acids/chemistry , Nipecotic Acids/pharmacology , Protein Binding , Stereoisomerism , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 20(24): 7259-64, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21074436

ABSTRACT

Antagonists of the corticotropin-releasing factor (CRF) neuropeptide may prove effective in treating stress and anxiety related disorders. In an effort to identify antagonists with improved physico-chemical properties a new series of CRF(1) antagonists were designed to substitute the propyl groups at the C7 position of the pyrazolo[1,5-a]pyrimidine core of 1 with heterocycles. Compound (S)-8d was identified as a high affinity ligand with a pK(i) value of 8.2 and a functional CRF(1) antagonist with pIC(50) value of 7.0 in the in vitro CRF ACTH production assay.


Subject(s)
Azabicyclo Compounds/chemistry , Oxadiazoles/chemistry , Pyrazoles/chemistry , Pyridines/chemistry , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Azabicyclo Compounds/chemical synthesis , Azabicyclo Compounds/pharmacokinetics , Humans , Microsomes, Liver/metabolism , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacokinetics , Protein Binding , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
17.
J Med Chem ; 53(23): 8228-40, 2010 Dec 09.
Article in English | MEDLINE | ID: mdl-21053897

ABSTRACT

In an effort to identify selective drug like pan-antagonists of the 5-HT1 autoreceptors, studies were conducted to elaborate a previously reported dual acting 5-HT1 antagonist/SSRI structure. A novel series of compounds was identified showing low intrinsic activities and potent affinities across the 5-HT1A, 5-HT1B, and 5-HT1D receptors as well as high selectivity against the serotonin transporter. From among these compounds, 1-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2-imidazolidinone (36) was found to combine potent in vivo activity with a strong preclinical developability profile, and on this basis it was selected as a drug candidate with the aim of assessing its potential as a fast-onset antidepressant/anxiolytic.


Subject(s)
Imidazoles/pharmacology , Quinolines/pharmacology , Serotonin Antagonists/pharmacology , Administration, Oral , Animals , CHO Cells , Chromatography, Liquid , Cricetulus , Drug Discovery , Humans , Imidazoles/administration & dosage , Imidazoles/chemistry , Magnetic Resonance Spectroscopy , Male , Quinolines/administration & dosage , Quinolines/chemistry , Rats, Sprague-Dawley , Receptors, Serotonin/classification , Serotonin Antagonists/administration & dosage , Serotonin Antagonists/chemistry , Tandem Mass Spectrometry
18.
Bioorg Med Chem Lett ; 20(24): 7308-11, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21055936

ABSTRACT

A new class of selective NPS antagonist was developed starting from a commercially available product identified by screening activities. Experimental NMR observations and computational experiments allowed the discovery of a new class of derivatives. 5-Phenyl-2-[2-(1-piperidinylcarbonyl)phenyl]-2,3-dihydro-1H-pyrrolo[1,2-c]imidazol-1-one represents a new lead compound in the NPS antagonist field.


Subject(s)
Azabicyclo Compounds/chemistry , Imidazoles/chemistry , Neuropeptides/antagonists & inhibitors , Piperidines/chemistry , Animals , Computer Simulation , Drug Design , Humans , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Microsomes, Liver/metabolism , Neuropeptides/metabolism , Rats , Thermodynamics
19.
Bioorg Med Chem Lett ; 20(23): 7120-3, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20951033

ABSTRACT

A novel class of benzimidazole NPY Y5 receptor antagonists was prepared exploiting a privileged spirocarbamate moiety. The structure-activity relationship of this series and efforts to achieve a profile suitable for further development and an appropriate pharmacokinetic profile in rat are described. Optimisation led to the identification of the brain penetrant, orally bioavailable Y5 antagonist 9b which significantly inhibited the food intake induced by a Y5 selective agonist with a minimal effective dose of 30mg/kg po.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Drug Design , Eating/drug effects , Receptors, Neuropeptide Y/antagonists & inhibitors , Administration, Oral , Animals , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Brain/metabolism , Dose-Response Relationship, Drug , Rats , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 20(23): 7092-6, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20951584

ABSTRACT

5-{2-[4-(2-Methyl-5-quinolinyl)-1-piperazinyl]ethyl}-2(1H)-quinolinones and 3,4-dihydro-2(1H)-quinolinones have been identified with different combinations of 5-HT(1) autoreceptor antagonist and hSerT potencies and excellent rat PK profiles. The availability of tool compounds with a range of profiles at targets known to play a key role in the control of synaptic 5-HT levels will allow exploration of different pharmacological profiles in a range of animal behavioral and disease models.


Subject(s)
Quinolones/chemistry , Receptors, Serotonin, 5-HT1/drug effects , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Animals , Autoreceptors/antagonists & inhibitors , Autoreceptors/drug effects , Quinolones/pharmacokinetics , Rats , Selective Serotonin Reuptake Inhibitors/pharmacology , Synapses/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...