Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Sci ; 42(4): 1473-1482, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32816165

ABSTRACT

The olfactory bulb (OB) seems to be the first affected structure in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Lewy body dementia (LBD). Deposits of protein aggregates, increased dopaminergic neurons, and decreased cholinergic inputs have all been described in the OB of these diseases. We investigated here the contribution of the activated microglial cells to the increased deposits of protein aggregates. We quantified the number of activated microglial cells and astrocytes in the OB of patients with histological diagnosis of PD (n = 5), AD (n = 13), and LBD (n = 7) and aged-matched controls (n = 8). Specific consensus diagnostic criteria were applied for AD, LBD, and PD. Protein aggregates were scored in the OB as grade 0, none; grade 1, mild; grade 2, moderate; and grade 3, severe. OB sections from the 33 subjects were stained with specific antibodies markers for reactive astrocytes (GFAP) and microglial cells (Iba1 and HLA-DR). The total number of Iba1-ir (Iba-immunoreactive) and HLAD-DR cells was estimated by stereological analysis, while quantification of astrocytes was performed by GFAP optical density. Statistical analysis was done using the Stata 12.0 software. The number of microglia and activated microglia cells (HLA-RD-ir) was increased in patients with neurodegenerative diseases (p < 0.05). Moreover, the density of GFAP-ir cells was higher in the OB of patients. Neither the number of microglia cells nor the density of astrocytes correlated with the number of b-amyloid and alpha-synuclein deposits, but the density of Iba1-ir cells correlated with the number of p-Tau aggregates. Activated microglial cells and reactive astrocytes are present in the OB of patients with neurodegenerative diseases. The lack of correlation between the number of activated microglia cells and protein deposits indicate that they might independently contribute to the degenerative process. The presence of microglia is related to phosphorylated Tau deposits in neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Microglia , Neurodegenerative Diseases , Olfactory Bulb , Aged , Humans , Microglia/metabolism , alpha-Synuclein/metabolism
2.
Clin Auton Res ; 29(4): 415-425, 2019 08.
Article in English | MEDLINE | ID: mdl-31338635

ABSTRACT

PURPOSE: Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces degeneration of dopaminergic neurons and reproduces the motor features of Parkinson disease (PD); however, the effect of MPTP on extranigral structures has been poorly studied. The aim of this research was to study the cardiac sympathetic innervation of control and MPTP-treated monkeys in order to describe the influence of MPTP toxicity on cardiac tissue. METHODS: Eight monkeys were included in the study and divided into two groups, four monkeys serving as controls and four forming the MPTP group. Sections from the anterior left ventricle were immunohistochemically examined to characterize the sympathetic fibers of cardiac tissue. The intensity of immunoreactivity in the nerve fibers was quantitatively analyzed using ImageJ software. RESULTS: As occurs in PD, the sympathetic peripheral nervous system is affected in MPTP-treated monkeys. The percentage of tyrosine hydroxylase immunoreactive fibers in the entire fascicle area was markedly lower in the MPTP group (24.23%) than the control group (35.27%) (p < 0.05), with preservation of neurofilament immunoreactive fibers in the epicardium of MPTP-treated monkeys. Alpha-synuclein deposits were observed in sections of the anterior left ventricle of MPTP-treated monkeys but not in control animals, whereas phosphorylated synuclein aggregates were not observed in either controls or MPTP-treated monkeys. CONCLUSION: The peripheral autonomic system can also be affected by neurotoxins that specifically inhibit mitochondrial complex I.


Subject(s)
Disease Models, Animal , Heart/innervation , Heart/physiopathology , MPTP Poisoning/physiopathology , Animals , MPTP Poisoning/metabolism , Macaca fascicularis , Male , Primates , Random Allocation , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology , alpha-Synuclein/metabolism
3.
Neurobiol Dis ; 62: 250-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24076099

ABSTRACT

Much controversy exists concerning the effect of levodopa on striatal dopaminergic markers in Parkinson's disease (PD) and its influence on functional neuroimaging. To deal with this issue we studied the impact of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic levodopa administration on striatal (18)F-DOPA uptake (Ki) in an animal model of PD. The levels of several striatal dopaminergic markers and the number of surviving dopaminergic neurons in the substantia nigra (SN) were also assessed. Eleven Macaca fascicularis were included in the study. Eight animals received weekly intravenous injections of MPTP for 7weeks and 3 intact animals served as controls. MPTP-monkeys were divided in two groups. Group I was treated with placebo while Group II received levodopa. Both treatments were maintained for 11months and then followed by a washout period of 6months. (18)F-DOPA positron emission tomography (PET) scans were performed at baseline, after MPTP intoxication, following 11months of treatment, and after a washout period of 1, 3 and 6months. Monkeys were sacrificed 6months after concluding either placebo or levodopa treatment and immediately after the last (18)F-DOPA PET study. Striatal dopamine transporter (DAT) content, tyrosine hydroxylase (TH) content and aromatic l-amino acid decarboxylase (AADC) content were assessed. In Group II (18)F-DOPA PET studies performed at 3 and 6months after interrupting levodopa showed a significantly increased Ki in the anterior putamen as compared to Group I. Levodopa and placebo treated animals exhibited a similar number of surviving dopaminergic cells in the SN. Striatal DAT content was equally reduced in both groups of animals. Animals in Group I exhibited a significant decrease in TH protein content in all the striatal regions assessed. However, in Group II, TH levels were significantly reduced only in the anterior and posterior putamen. Surprisingly, in the levodopa-treated animals the TH levels in the posterior putamen were significantly lower than those in the placebo group. AADC levels in MPTP groups were similar to those of control animals in all striatal areas analyzed. This study shows that chronic levodopa administration to monkeys with partial nigrostriatal degeneration followed by a washout period induces modifications in the functional activity of the dopaminergic nigrostriatal pathway.


Subject(s)
Antiparkinson Agents/pharmacology , Corpus Striatum/drug effects , Dopaminergic Neurons/drug effects , Levodopa/pharmacology , Parkinsonian Disorders/metabolism , Substantia Nigra/drug effects , Animals , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Dihydroxyphenylalanine/analogs & derivatives , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Macaca fascicularis , Magnetic Resonance Imaging , Male , Neural Pathways/drug effects , Parkinsonian Disorders/diagnostic imaging , Positron-Emission Tomography , Substantia Nigra/metabolism
4.
Acta Neuropathol ; 126(3): 411-25, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23784261

ABSTRACT

Olfactory impairment is a common feature of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). Olfactory bulb (OB) pathology in these diseases shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. Since cholinergic denervation might be a common underlying pathophysiological feature, the objective of this study was to determine cholinergic innervation of the OB in 27 patients with histological diagnosis of PD (n = 5), AD (n = 14), DLB (n = 8) and 8 healthy control subjects. Cholinergic centrifugal inputs to the OB were clearly reduced in all patients, the most significant decrease being in the DLB group. We also studied cholinergic innervation of the OB in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys (n = 7) and 7 intact animals. In MPTP-monkeys, we found that cholinergic innervation of the OB was reduced compared to control animals (n = 7). Interestingly, in MPTP-monkeys, we also detected a loss of cholinergic neurons and decreased dopaminergic innervation in the horizontal limb of the diagonal band, which is the origin of the centrifugal cholinergic input to the OB. All these data suggest that cholinergic damage in the OB might contribute, at least in part, to the olfactory dysfunction usually exhibited by these patients. Moreover, decreased cholinergic input to the OB found in MPTP-monkeys suggests that dopamine depletion in itself might reduce the cholinergic tone of basal forebrain cholinergic neurons.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , Alzheimer Disease/metabolism , Cholinergic Neurons/metabolism , Olfactory Bulb/metabolism , Parkinson Disease/metabolism , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Dopamine/metabolism , Female , Haplorhini , Humans , Male , Olfactory Bulb/pathology
6.
PLoS One ; 7(11): e50842, 2012.
Article in English | MEDLINE | ID: mdl-23226401

ABSTRACT

In addition to the medium spiny neurons the mammalian striatum contains a small population of GABAergic interneurons that are immunoreactive for tyrosine hydroxylase (TH), which dramatically increases after lesions to the nigrostriatal pathway and striatal delivery of neurotrophic factors. The regulatory effect of levodopa (L-Dopa) on the number and phenotype of these cells is less well understood. Eleven macaques (Macaca fascicularis) were included. Group I (n = 4) received 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) and L-Dopa; Group II (n = 4) was treated with MPTP plus vehicle and Group III (n = 3) consist of intact animals (control group). L-Dopa and vehicle were given for 1 year and animals sacrificed 6 months later. Immunohistochemistry against TH was used to identify striatal and nigral dopaminergic cells. Double and triple labeling immunofluorescence was performed to detect the neurochemical characteristics of the striatal TH-ir cells using antibodies against: TH, anti-glutamate decarboxylase (GAD(67)) anti-calretinin (CR) anti-dopa decarboxylase (DDC) and anti-dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32). The greatest density of TH-ir striatal cells was detected in the striatum of the L-Dopa treated monkeys and particularly in its associative territory. None of the striatal TH-ir cell expressed DARPP-32 indicating they are interneurons. The percentages of TH-ir cells that expressed GAD67 and DDC was approximately 50%. Interestingly, we found that in the L-Dopa group the number of TH/CR expressing cells was significantly reduced. We conclude that chronic L-Dopa administration produced a long-lasting increase in the number of TH-ir cells, even after a washout period of 6 months. L-Dopa also modified the phenotype of these cells with a significant reduction of the TH/CR phenotype in favor of an increased number of TH/GAD cells that do not express CR. We suggest that the increased number of striatal TH-ir cells might be involved in the development of aberrant striatal circuits and the appearance of L-Dopa induced dyskinesias.


Subject(s)
Dopaminergic Neurons/pathology , Levodopa/administration & dosage , Levodopa/pharmacology , Macaca fascicularis/physiology , Neostriatum/pathology , Substantia Nigra/pathology , Tyrosine 3-Monooxygenase/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Behavior, Animal/drug effects , Dopaminergic Neurons/drug effects , Fluorescent Antibody Technique , Male , Neostriatum/drug effects , Neostriatum/enzymology , Phenotype , Substantia Nigra/drug effects , Substantia Nigra/enzymology
7.
Acta Neuropathol ; 122(1): 61-74, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21553300

ABSTRACT

Olfactory dysfunction is a frequent and early feature of patients with neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) and is very uncommon in patients with frontotemporal dementia (FTD). Mechanisms underlying this clinical manifestation are poorly understood but the premature deposition of protein aggregates in the olfactory bulb (OB) of these patients might impair its synaptic organization, thus accounting for the smell deficits. Tau, ß-amyloid and alpha-synuclein deposits were studied in 41 human OBs with histological diagnosis of AD (n = 24), PD (n = 6), FTD (n = 11) and compared with the OB of 15 control subjects. Tau pathology was present in the OB of all patients, irrespective of the histological diagnosis, while ß-amyloid and alpha-synuclein protein deposit were frequently observed in AD and PD, respectively. Using stereological techniques we found an increased number of dopaminergic periglomerular neurons in the OB of AD, PD and FTD patients when compared with age-matched controls. Moreover, volumetric measurements of OBs showed a significant decrease only in AD patients, while the OB volume was similar to control in PD or FTD cases. The increased dopaminergic tone created in the OBs of these patients could reflect a compensatory mechanism created by the early degeneration of other neurotransmitter systems and might contribute to the olfactory dysfunction exhibited by patients with neurodegenerative disorders.


Subject(s)
Alzheimer Disease/metabolism , Dopamine/metabolism , Frontotemporal Dementia/metabolism , Olfactory Bulb/metabolism , Parkinson Disease/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Autopsy , Case-Control Studies , Female , Frontotemporal Dementia/pathology , Humans , Male , Olfactory Bulb/pathology , Olfactory Bulb/physiopathology , Parkinson Disease/pathology , Parkinson Disease/physiopathology , alpha-Synuclein/metabolism , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...