Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 127(9): 097402, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506196

ABSTRACT

Optical excitation perturbs the balance of phenomena selecting the tilt orientation of domain walls within ferroelectric thin films. The high carrier density induced in a low-strain BaTiO_{3} thin film by an above-band-gap ultrafast optical pulse changes the tilt angle that 90° a/c domain walls form with respect to the substrate-film interface. The dynamics of the changes are apparent in time-resolved synchrotron x-ray scattering studies of the domain diffuse scattering. Tilting occurs at 298 K, a temperature at which the a/b and a/c domain phases coexist but is absent at 343 K in the better ordered single-phase a/c regime. Phase coexistence at 298 K leads to increased domain-wall charge density, and thus a larger screening effect than in the single-phase regime. The screening mechanism points to new directions for the manipulation of nanoscale ferroelectricity.

2.
J Synchrotron Radiat ; 26(Pt 6): 1956-1966, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31721741

ABSTRACT

The full radiation from the first harmonic of a synchrotron undulator (between 5 and 12 keV) at the Advanced Photon Source is microfocused using a stack of beryllium compound refractive lenses onto a fast-moving liquid jet and overlapped with a high-repetition-rate optical laser. This micro-focused geometry is used to perform efficient nonresonant X-ray emission spectroscopy on transient species using a dispersive spectrometer geometry. The overall usable flux achieved on target is above 1015 photons s-1 at 8 keV, enabling photoexcited systems in the liquid phase to be tracked with time resolutions from tens of picoseconds to microseconds, and using the full emission spectrum, including the weak valence-to-core signal that is sensitive to chemically relevant electronic properties.

3.
Phys Rev Lett ; 123(4): 045703, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31491252

ABSTRACT

Above-band-gap optical illumination of compressively strained BiFeO_{3} induces a transient reversible transformation from a state of coexisting tilted tetragonal-like and rhombohedral-like phases to an untilted tetragonal-like phase. Time-resolved synchrotron x-ray diffraction reveals that the transformation is induced by an ultrafast optically induced lattice expansion that shifts the relative free energies of the tetragonal-like and rhombohedral-like phases. The transformation proceeds at interfaces between regions of the tetragonal-like phase and regions of a mixture of tilted phases, consistent with the motion of a phase boundary. The optically induced transformation demonstrates that there are new optically driven routes towards nanosecond-scale control of phase transformations in ferroelectrics and multiferroics.

4.
J Synchrotron Radiat ; 26(Pt 5): 1790-1796, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490171

ABSTRACT

A multimodal imaging instrument has been developed that integrates scanning near-field optical microscopy with nanofocused synchrotron X-ray diffraction imaging. The instrument allows for the simultaneous nanoscale characterization of electronic/near-field optical properties of materials together with their crystallographic structure, facilitating the investigation of local structure-property relationships. The design, implementation and operating procedures of this instrument are reported. The scientific capabilities are demonstrated in a proof-of-principle study of the insulator-metal phase transition in samarium sulfide (SmS) single crystals induced by applying mechanical pressure via a scanning tip. The multimodal imaging of an in situ tip-written region shows that the near-field optical reflectivity can be correlated with the heterogeneously transformed structure of the near-surface region of the crystal.

5.
J Phys Condens Matter ; 31(31): 315401, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-30995634

ABSTRACT

The spin crossover (SCO) transitions at both the surface and over the entire volume of the [Fe{H2B(pz)2}2(bipy)] polycrystalline films on Al2O3 substrates have been studied, where pz = pyrazol-1-yl and bipy = 2,2'-bipyridine. For [Fe{H2B(pz)2}2(bipy)] films of hundreds of nm thick, magnetometry and x-ray absorption spectroscopy measurements show thermal hysteresis in the SCO transition with temperature, although the transition in bulk [Fe{H2B(pz)2}2(bipy)] occurs in a non-hysteretic fashion at 157 K. While the size of the crystallites in those films are similar, the hysteresis becomes more prominent in thinner films, indicating a significant effect of the [Fe{H2B(pz)2}2(bipy)]/Al2O3 interface. Bistability of spin states, which can be inferred from the thermal hysteresis, was directly observed using temperature-dependent x-ray diffraction; the crystallites behave as spin-state domains that coexist during the transition. The difference between the spin state of molecules at the surface of the [Fe{H2B(pz)2}2(bipy)] films and that of the molecules within the films, during the thermal cycle, indicates that both cooperative (intermolecular) effects and coordination are implicated in perturbations to the SCO transition.

6.
Rev Sci Instrum ; 89(9): 093111, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278704

ABSTRACT

There are several reports in the scientific literature of the use of mass-produced charge coupled device or complementary metal oxide semiconductor (CMOS) sensors as x-ray detectors that combine high spatial resolution with significant energy resolution. Exploiting a relatively new especially favorable ambient-temperature back-illuminated CMOS sensor, we report the development of a spectroscopic x-ray camera having particularly impressive performance for 2-6 keV photons. This instrument has several beneficial characteristics for advanced x-ray spectroscopy studies in the laboratory, at synchrotron light sources, at x-ray free electron lasers, or when using pulsed x-ray sources such as for laser plasma physics research. These characteristics include fine position and energy resolution for individual photon events, high saturation rates, frame rates above 100 Hz, easy user maintenance for damaged sensors, and software for real-time processing. We evaluate this camera as an alternative to traditional energy-dispersive solid-state detectors, such as silicon drift detectors, and also illustrate its use in a very high resolution wavelength-dispersive x-ray fluorescence spectrometer (i.e., x-ray emission spectrometer) that has recently been reported elsewhere [W. M. Holden et al., Rev. Sci. Instrum. 88(7), 073904 (2017)].

7.
J Appl Phys ; 122(24): 243101, 2017 Dec 28.
Article in English | MEDLINE | ID: mdl-29307919

ABSTRACT

Absorption of hard x-rays in GaAs creates excitations that can dramatically alter the propagation of optical laser pulses with photon energies near the bandgap. Measurements of optical transmission through a thin crystalline wafer of GaAs after absorption of an intense x-ray synchrotron pulse demonstrate how x-ray induced optical transparency depends on the recombination of excited conduction band electrons and valence band holes via Auger, spontaneous emission, and especially stimulated emission processes. The x-ray induced band fluorescence spectrum also reveals amplified spontaneous emission at the high x-ray fluences used, confirming the importance of stimulated emission. For laser pulses with sufficiently high fluence, the interaction of optically excited electrons with x-ray excited electrons can quench the enhanced laser transmission.

8.
Nature ; 483(7388): 194-7, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22398558

ABSTRACT

Establishing the structure of molecules and solids has always had an essential role in physics, chemistry and biology. The methods of choice are X-ray and electron diffraction, which are routinely used to determine atomic positions with sub-ångström spatial resolution. Although both methods are currently limited to probing dynamics on timescales longer than a picosecond, the recent development of femtosecond sources of X-ray pulses and electron beams suggests that they might soon be capable of taking ultrafast snapshots of biological molecules and condensed-phase systems undergoing structural changes. The past decade has also witnessed the emergence of an alternative imaging approach based on laser-ionized bursts of coherent electron wave packets that self-interrogate the parent molecular structure. Here we show that this phenomenon can indeed be exploited for laser-induced electron diffraction (LIED), to image molecular structures with sub-ångström precision and exposure times of a few femtoseconds. We apply the method to oxygen and nitrogen molecules, which on strong-field ionization at three mid-infrared wavelengths (1.7, 2.0 and 2.3 µm) emit photoelectrons with a momentum distribution from which we extract diffraction patterns. The long wavelength is essential for achieving atomic-scale spatial resolution, and the wavelength variation is equivalent to taking snapshots at different times. We show that the method has the sensitivity to measure a 0.1 Å displacement in the oxygen bond length occurring in a time interval of ∼5 fs, which establishes LIED as a promising approach for the imaging of gas-phase molecules with unprecedented spatio-temporal resolution.

9.
Phys Rev Lett ; 109(23): 233002, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368191

ABSTRACT

Recently, using midinfrared laser-induced electron diffraction (LIED), snapshots of a vibrating diatomic molecule on a femtosecond time scale have been captured [C.I. Blaga et al., Nature (London) 483, 194 (2012)]. In this Letter, a comprehensive treatment for the atomic LIED response is reported, a critical step in generalizing this imaging method. Electron-ion differential cross sections (DCSs) of rare gas atoms are extracted from measured angular-resolved, high-energy electron momentum distributions generated by intense midinfrared lasers. Following strong-field ionization, the high-energy electrons result from elastic rescattering of a field-driven wave packet with the parent ion. For recollision energies ≥100 eV, the measured DCSs are indistinguishable for the neutral atoms and ions, illustrating the close collision nature of this interaction. The extracted DCSs are found to be independent of laser parameters, in agreement with theory. This study establishes the key ingredients for applying LIED to femtosecond molecular imaging.

10.
Phys Rev Lett ; 107(16): 167407, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22107430

ABSTRACT

We report time-resolved electroabsorption of a weak probe in a 500 µm thick zinc-oxide crystal in the presence of a strong midinfrared pump in the tunneling limit. We observe a substantial redshift in the absorption edge that scales with the cube root of intensity up to 1 TW/cm(2) (0.38 eV cm(2/3) TW(-1/3)) after which it increases more slowly to 0.4 eV at a maximum applied intensity of 5 TW/cm(2). The maximum shift corresponds to more than 10% of the band gap. The change in scaling occurs in a regime of nonperturbative high-order harmonic generation where electrons undergo periodic Bragg scattering from the Brillouin zone boundaries. It also coincides with the limit where the electric field becomes comparable to the ratio of the band gap to the lattice spacing.

11.
Opt Express ; 17(23): 20959-65, 2009 Nov 09.
Article in English | MEDLINE | ID: mdl-19997334

ABSTRACT

We present a harmonic generation experiment using liquid H(2)O and D(2)O interrogated by a mid-infrared, 3.66 mum, laser at a maximum intensity of 8x10(13) W/cm(2). The unique aspects of the experiment include the long wavelength and short (9 cycle-110 fs) pulse duration of the laser as well as the near-resonant excitation of the H(2)O and D(2)O vibrational modes. We observe up to the 13th harmonic order in H(2)O and intensity scaling is consistent with a direct perturbative process up to the 9th harmonic order. Phase matching and resonant absorption are unable to account for the observed differences in harmonic yields between samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...