Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 14(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37504584

ABSTRACT

Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.

2.
J Econ Entomol ; 115(1): 10-25, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34922393

ABSTRACT

Canadian and United States (US) insect resistance management (IRM) programs for lepidopteran pests in Bacillus thuriengiensis (Bt)-expressing crops are optimally designed for Ostrinia nubilalis Hübner in corn (Zea mays L.) and Chloridea virescens Fabricius in cotton (Gossypium hirsutum L.). Both Bt corn and cotton express a high dose for these pests; however, there are many other target pests for which Bt crops do not express high doses (commonly referred to as nonhigh dose pests). Two important lepidopteran nonhigh dose (low susceptibility) pests are Helicoverpa zea Boddie (Lepidoptera: Noctuidae) and Striacosta albicosta Smith (Lepidoptera: Noctuidae). We highlight both pests as cautionary examples of exposure to nonhigh dose levels of Bt toxins when the IRM plan was not followed. Moreover, IRM practices to delay Bt resistance that are designed for these two ecologically challenging and important pests should apply to species that are more susceptible to Bt toxins. The purpose of this article is to propose five best management practices to delay the evolution of Bt resistance in lepidopteran pests with low susceptibility to Bt toxins in Canada and the US: 1) better understand resistance potential before commercialization, 2) strengthen IRM based on regional pest pressure by restricting Bt usage where it is of little benefit, 3) require and incentivize planting of structured corn refuge everywhere for single toxin cultivars and in the southern US for pyramids, 4) integrate field and laboratory resistance monitoring programs, and 5) effectively use unexpected injury thresholds.


Subject(s)
Bacillus thuringiensis , Bacillus , Moths , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Canada , Endotoxins , Hemolysin Proteins , Insecticide Resistance , Pest Control, Biological , Plants, Genetically Modified/genetics , United States , Zea mays/genetics
3.
Theor Appl Genet ; 130(12): 2601-2615, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28887657

ABSTRACT

KEY MESSAGE: Rag6 and Rag3c were delimited to a 49-kb interval on chromosome 8 and a 150-kb interval on chromosome 16, respectively. Structural variants in the exons of candidate genes were identified. The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2000. Host-plant resistance is known as an ideal management strategy for aphids. Two novel aphid-resistance loci, Rag6 and Rag3c, from Glycine soja 85-32, were previously detected in a 10.5-cM interval on chromosome 8 and a 7.5-cM interval on chromosome 16, respectively. Defining the exact genomic position of these two genes is critical for improving the effectiveness of marker-assisted selection for aphid resistance and for identification of the functional genes. To pinpoint the locations of Rag6 and Rag3c, four populations segregating for Rag6 and Rag3c were used to fine map these two genes. The availability of the Illumina Infinium SoySNP50K/8K iSelect BeadChip, combined with single-nucleotide polymorphism (SNP) markers discovered through the whole-genome re-sequencing of E12901, facilitated the fine mapping process. Rag6 was refined to a 49-kb interval on chromosome 8 with four candidate genes, including three clustered nucleotide-binding site leucine-rich repeat (NBS-LRR) genes and an amine oxidase encoding gene. Rag3c was refined to a 150-kb interval on chromosome 16 with 11 candidate genes, two of which are a LRR gene and a lipase gene. Moreover, by sequencing the whole-genome exome-capture of the resistant source (E12901), structural variants were identified in the exons of the candidate genes of Rag6 and Rag3c. The closely linked SNP markers and the candidate gene information presented in this study will be significant resources for integrating Rag6 and Rag3c into elite cultivars and for future functional genetics studies.


Subject(s)
Aphids , Chromosome Mapping , Genes, Plant , Glycine max/genetics , Animals , DNA, Plant/genetics , Genetic Markers , Herbivory , Polymorphism, Single Nucleotide
4.
Theor Appl Genet ; 130(9): 1941-1952, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28710504

ABSTRACT

KEY MESSAGE: Two novel QTLs conferring aphid resistance were mapped and validated on soybean chromosomes 8 and 16, respectively. Closely linked markers were developed to assist breeding for aphid resistance. Soybean aphid, Aphis glycines Matsumura, is a highly destructive pest for soybean production. E08934, a soybean advanced breeding line derived from the wild soybean Glycine soja 85-32, has shown strong resistance to aphids. To dissect the genetic basis of aphid resistance in E08934, a mapping population (070020) consisting of 140 F3-derived lines was developed by crossing E08934 with an aphid-susceptible line E00003. This mapping population was evaluated for aphid resistance in a greenhouse trial in 2010 and three field trials in 2009, 2010, and 2011, respectively. The broad-sense heritability across the field trials was 0.84. In the mapping population 070020, two major quantitative trait loci (QTL) were detected as significantly associated with aphid resistance, and designated as Rag6 and Rag3c, respectively. Rag6 was mapped to a 10.5 centiMorgan (cM) interval between markers MSUSNP08-2 and Satt209 on chromosome 8, explaining 19.5-46.4% of the phenotypic variance in different trials. Rag3c was located at a 7.5 cM interval between markers MSUSNP16-10 and Sat_370 on chromosome 16, explaining 12.5-22.9% of the phenotypic variance in different trials. Rag3c had less resistance effect than Rag6 across all the trials. Furthermore, Rag6 and Rag3c were confirmed in two validation populations with different genetic backgrounds. No significant interaction was detected between Rag6 and Rag3c in either the mapping population or the validation populations. Both Rag6 and Rag3c were indicated as conferring antibiosis resistance to aphids by a no-choice test. The new aphid-resistance gene(s) derived from the wild germplasm G. soja 85-32 are valuable in improving soybeans for aphid resistance.


Subject(s)
Aphids , Glycine max/genetics , Quantitative Trait Loci , Animals , Chromosome Mapping , Genetics, Population , Herbivory , Phenotype , Plant Breeding
SELECTION OF CITATIONS
SEARCH DETAIL
...