Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 19(1): 136-149, 2021 01.
Article in English | MEDLINE | ID: mdl-33033110

ABSTRACT

The extracellular matrix (ECM) is often unaccounted for in studies that consider the stromal contribution to cancer cell signaling and response to treatment. To investigate the influence of a fibrotic microenvironment, we use fibroblast-derived ECM scaffolds as a cell culture platform. We uncover that estrogen receptor-positive (ER+) breast cancer cells cultured within ECM-scaffolds have an increase in ER signaling that occurs via an MAPK-dependent, but estrogen-independent manner. The ECM acts as a reservoir by binding, enriching, and presenting growth factors to adjacent epithelial cells. We identified FGF2 as a specific ECM-bound factor that drives ER signaling. ER+ cells cultured on ECM matrices have reduced sensitivity to ER-targeted therapies. The sensitivity to ER-targeted therapy can be restored by inhibiting FGF2-FGFR1 binding. ECM-FGF2 complexes promote Cyclin D1 induction that prevents G1 arrest even in the presence of antiestrogens. This work demonstrates that the ECM can drive ER signaling and resistance to endocrine therapy, and suggests that patients with ER+ breast cancer that have high mammographic breast density may benefit from existing FGFR-targeted therapies. IMPLICATIONS: This work uncovers how the ECM may mediate signaling between growth factors and ER+ breast cancer cells to promote estrogen-independent ER signaling and resistance to endocrine therapy.


Subject(s)
Breast Neoplasms/metabolism , Extracellular Matrix/metabolism , Fibroblast Growth Factor 2/metabolism , Receptors, Estrogen/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Disease Models, Animal , Female , Heterografts , Humans , MCF-7 Cells , Mice
2.
Cancer Res ; 80(22): 4998-5010, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33023947

ABSTRACT

Intratumoral hypoxia occurs in 90% of solid tumors and is associated with a poor prognosis for patients. Cancer cells respond to hypoxic microenvironments by activating the transcription factors, hypoxia-inducible factor 1 (HIF1) and HIF2. Here, we studied the unique gene expression patterns of 31 different breast cancer cell lines exposed to hypoxic conditions. The EGFR, a member of the ErbB (avian erythroblastosis oncogene B) family of receptors that play a role in cell proliferation, invasion, metastasis, and apoptosis, was induced in seven of the 31 breast cancer cell lines by hypoxia. A functional hypoxia response element (HRE) was identified, which is activated upon HIF1 binding to intron 18 of the EGFR gene in cell lines in which EGFR was induced by hypoxia. CpG methylation of the EGFR HRE prevented induction under hypoxic conditions. The HRE of EGFR was methylated in normal breast tissue and some breast cancer cell lines, and could be reversed by treatment with DNA methyltransferase inhibitors. Induction of EGFR under hypoxia led to an increase in AKT, ERK, and Rb phosphorylation as well as increased levels of cyclin D1, A, B1, and E2F, and repression of p21 in an HIF1α-dependent manner, leading to cell proliferation and migration. Also, increased EGFR expression sensitized cells to EGFR inhibitors. Collectively, our data suggest that patients with hypoxic breast tumors and hypomethylated EGFR status may benefit from EGFR inhibitors currently used in the clinic. SIGNIFICANCE: Hypoxia sensitizes breast cancer cells to EGFR inhibitors in an HIF1α- and a methylation-specific manner, suggesting patients with hypoxic tumors may benefit from EGFR inhibitors already available in the clinic. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/22/4998/F1.large.jpg.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , DNA Methylation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Tumor Hypoxia/physiology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , CpG Islands , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytosine/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Genes, erbB-1 , HSP70 Heat-Shock Proteins/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , MAP Kinase Signaling System , Methyltransferases/antagonists & inhibitors , Mice , Phosphorylation , Retinoblastoma Protein/metabolism , Signal Transduction/physiology
3.
Cancer Rep (Hoboken) ; 3(1): e1164, 2020 02.
Article in English | MEDLINE | ID: mdl-32671953

ABSTRACT

BACKGROUND: RhoB is a Rho family GTPase that is highly homologous to RhoA and RhoC. RhoA and RhoC have been shown to promote tumor progression in many cancer types; however, a distinct role for RhoB in cancer has not been delineated. Additionally, several well-characterized studies have shown that small GTPases such as RhoA, Rac1, and Cdc42 are induced in vitro under hypoxia, but whether and how hypoxia regulates RhoB in breast cancer remains elusive. AIMS: To determine whether and how hypoxia regulates RhoB expression and to understand the role of RhoB in breast cancer metastasis. METHODS: We investigated the effects of hypoxia on the expression and activation of RhoB using real-time quantitative polymerase chain reaction and western blotting. We also examined the significance of both decreased and increased RhoB expression in breast cancer using CRISPR depletion of RhoB or a vector overexpressing RhoB in 3D in vitro migration models and in an in vivo mouse model. RESULTS: We found that hypoxia significantly upregulated RhoB mRNA and protein expression resulting in increased levels of activated RhoB. Both loss of RhoB and gain of RhoB expression led to reduced migration in a 3D collagen matrix and invasion within a multicellular 3D spheroid. We showed that neither the reduction nor overexpression of RhoB affected tumor growth in vivo. While the loss of RhoB had no effect on metastasis, RhoB overexpression led to decreased metastasis to the lungs, liver, and lymph nodes of mice. CONCLUSION: Our results suggest that RhoB may have an important role in suppressing breast cancer metastasis.


Subject(s)
Breast Neoplasms/pathology , Tumor Hypoxia/physiology , rhoB GTP-Binding Protein/physiology , Cell Line, Tumor , Cell Movement , Female , Humans , Neoplasm Metastasis , Spheroids, Cellular
4.
Adv Exp Med Biol ; 1136: 141-157, 2019.
Article in English | MEDLINE | ID: mdl-31201722

ABSTRACT

Patients with the low levels of O2 (hypoxia) in their primary tumors have a higher risk for metastasis and death, indicating a need to therapeutically inhibit the effectors of hypoxia. Many strategies have been developed and investigated to block the hypoxic response. For example, inhibitors of HIF-1 and HIF-2 function by altering the transcription, translation, dimerization, nuclear translocation, DNA-binding, or ubiquitination of the HIF proteins. Hypoxia-activated prodrugs inhibit the hypoxic response through hypoxia-mediated reduction of an inactive, or minimally active, chemical to a cytotoxic agent. Most hypoxia-activated prodrugs function by inducing DNA damage, but others with more novel functions, including prodrugs that release EGFR/HER2 inhibitors also exist. Despite the existence of many therapeutics to combat the hypoxic response, there has been very little success in late phase clinical trials, potentially due to a lack of biomarkers that can be used to stratify patients who would benefit from a hypoxia-targeted therapy.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Hypoxia-Inducible Factor 1 , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Hypoxia , Cell Hypoxia , Humans
5.
PLoS One ; 13(12): e0209591, 2018.
Article in English | MEDLINE | ID: mdl-30589908

ABSTRACT

The majority of cancer-related deaths are due to metastasis, hence improved methods to biologically and computationally model metastasis are required. Computational models rely on robust data that is machine-readable. The current methods used to model metastasis in mice involve generating primary tumors by injecting human cells into immune-compromised mice, or by examining genetically engineered mice that are pre-disposed to tumor development and that eventually metastasize. The degree of metastasis can be measured using flow cytometry, bioluminescence imaging, quantitative PCR, and/or by manually counting individual lesions from metastatic tissue sections. The aforementioned methods are time-consuming and do not provide information on size distribution or spatial localization of individual metastatic lesions. In this work, we describe and provide a MATLAB script for an image-processing based method designed to obtain quantitative data from tissue sections comprised of multiple subpopulations of disseminated cells localized at metastatic sites in vivo. We further show that this method can be easily adapted for high throughput imaging of live or fixed cells in vitro under a multitude of conditions in order to assess clonal fitness and evolution. The inherent variation in mouse studies, increasing complexity in experimental design which incorporate fate-mapping of individual cells, result in the need for a large cohort of mice to generate a robust dataset. High-throughput imaging techniques such as the one that we describe will enhance the data that can be used as input for the development of computational models aimed at modeling the metastatic process.


Subject(s)
Computational Biology/methods , Neoplasms/pathology , Software , Algorithms , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression , Genes, Reporter , Humans , Image Processing, Computer-Assisted , Models, Biological , Neoplasm Metastasis , Tumor Burden , User-Computer Interface
6.
Mol Cancer Res ; 16(12): 1889-1901, 2018 12.
Article in English | MEDLINE | ID: mdl-30037853

ABSTRACT

Intratumoral hypoxia has been associated with invasion, metastasis, and treatment failure, prompting the need for a global characterization of the response to hypoxic conditions. The current study presents the results of a large-scale RNA sequencing (RNA-seq) effort, analyzing 31 breast cancer cell lines representative of breast cancer subtypes or normal mammary epithelial (NME) cells exposed to control tissue culture conditions (20% O2) or hypoxic conditions (1% O2). The results demonstrate that NME have a stronger response to hypoxia both in terms of number of genes induced by hypoxia as well as level of expression. A conserved 42-gene hypoxia signature shared across PAM50 subtypes and genes that are exclusively upregulated in Luminal A, Luminal B, and normal-like mammary epithelial cells is identified. The 42-gene expression signature is enriched in a subset of basal-like cell lines and tumors and differentiates survival among patients with basal-like tumors. Mechanistically, the hypoxia-inducible factors (HIF-1 and/or HIF-2) mediate the conserved hypoxic response. Also, four novel hypoxia-regulated and HIF-1-responsive genes were identified as part of the conserved signature. This dataset provides a novel resource to query transcriptional changes that occur in response to hypoxia and serves as a starting point for a clinical assay to aid in stratifying patients that would benefit from hypoxia-targeted therapies, some of which are currently in clinical trials. IMPLICATIONS: RNA-seq of 31 breast cancer cells exposed to control or hypoxic conditions reveals a conserved genomic signature that contains novel HIF-regulated genes and is prognostic for the survival of patients with triple-negative breast cancer.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Breast Neoplasms/genetics , Gene Expression Profiling/methods , Hypoxia-Inducible Factor 1/genetics , Sequence Analysis, RNA/methods , Breast Neoplasms/pathology , Cell Hypoxia , Cell Line, Tumor , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Prognosis , Survival Analysis
7.
Target Oncol ; 13(2): 157-173, 2018 04.
Article in English | MEDLINE | ID: mdl-29423593

ABSTRACT

Metastasis is the leading cause of cancer-related deaths. Recent research has implicated tumor inflammation as a promoter of metastasis. Myeloid, lymphoid, and mesenchymal cells in the tumor microenvironment promote inflammatory signaling amongst each other and together with cancer cells to modulate sustained inflammation, which may enhance cancer invasiveness. Tumor hypoxia, a state of reduced available oxygen present in the majority of solid tumors, acts as a prognostic factor for a worse outcome and is known to have a role in tumor inflammation through the regulation of inflammatory mediator signals in both cancer and neighboring cells in the microenvironment. Multiple methods to target tumor hypoxia have been developed and tested in clinical trials, and still more are emerging as the impacts of hypoxia become better understood. These strategies include mechanistic inhibition of the hypoxia inducible factor signaling pathway and hypoxia activated pro-drugs, leading to both anti-tumor and anti-inflammatory effects. This prompts a need for further research on the prevention of hypoxia-mediated inflammation in cancer. Hypoxia-targeting strategies seem to have the most potential for therapeutic benefit when combined with traditional chemotherapy agents. This paper will serve to summarize the role of the inflammatory response in metastasis, to discuss how hypoxia can enable or enhance inflammatory signaling, and to review established and emerging strategies to target the hypoxia-inflammation-metastasis axis.


Subject(s)
Inflammation Mediators/immunology , Inflammation/immunology , Tumor Hypoxia/immunology , Humans , Neoplasm Metastasis
8.
Oncotarget ; 6(41): 43438-51, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26528856

ABSTRACT

The physical underpinnings of fibrosarcoma cell dissemination from a tumor in a surrounding collagen-rich matrix are poorly understood. Here we show that a tumor spheroid embedded in a 3D collagen matrix exerts large contractile forces on the matrix before invasion. Cell invasion is accompanied by complex spatially and temporally dependent patterns of cell migration within and at the surface of the spheroids that are fundamentally different from migratory patterns of individual fibrosarcoma cells homogeneously distributed in the same type of matrix. Cells display a continuous transition from a round morphology at the spheroid core, to highly aligned elongated morphology at the spheroid periphery, which depends on both ß1-integrin-based cell-matrix adhesion and myosin II/ROCK-based cell contractility. This isotropic-to-anisotropic transition corresponds to a shift in migration, from a slow and unpolarized movement at the core, to a fast, polarized and persistent one at the periphery. Our results also show that the ensuing collective invasion of fibrosarcoma cells is induced by anisotropic contractile stresses exerted on the surrounding matrix.


Subject(s)
Cell Movement/physiology , Extracellular Matrix/metabolism , Fibrosarcoma/pathology , Neoplasm Invasiveness/pathology , Cell Adhesion , Cell Line, Tumor , Collagen/metabolism , Humans , Microscopy, Fluorescence , Spheroids, Cellular
SELECTION OF CITATIONS
SEARCH DETAIL
...